Loading…
Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries
We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning ele...
Saved in:
Published in: | Analytica chimica acta 2018-11, Vol.1032, p.147-153 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3 |
container_end_page | 153 |
container_issue | |
container_start_page | 147 |
container_title | Analytica chimica acta |
container_volume | 1032 |
creator | Collado, Crystal M. Horner, Ian J. Empey, Jennifer M. Nguyen, Lisa N.Q. Bright, Frank V. |
description | We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process.
[Display omitted]
•Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites. |
doi_str_mv | 10.1016/j.aca.2018.05.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2093400742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000326701830672X</els_id><sourcerecordid>2093400742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhku34zyaxOKEKWqRKvdCz5TgT8JLEwXYq9dt3oi0cOCBZGtv6zdPMe4y9E7AXIOrL4955t5cg2j0c6MgXbCfaRlVaSf2S7QBAVbJu4Iyd53ykpxSgX7MzBYIQIXdsuXbjGNaJh7nfCq4FfQmeTy7_CvMPvqQQEy-RLzHFNfMcxuDjzIeYJlcC3XxCVzDzdQ6_V-R5oW8Sfax6XHDucS7c_8Qp5JIC5jfs1eDGjG-f6wW7__rl-9VNdXt3_e3q823ltdSlws6g90Z2BhT03rRStwPWTYdwOAzKNK5zBoURCkzT19pLZ4SvnfLY0o6oLtjHk-6SIo2Vi6UJPI6jm5H2sBKM0gCNloR--Ac9xjXNNJ0lj7Su66beKHGifIo5JxwsWTO59GgF2C0Oe7QUh93isHCgs_W8f1Zeuwn7vx1__Cfg0wlAsuIhYLLZB5w99iFRDraP4T_yT9OSnEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124466762</pqid></control><display><type>article</type><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><source>Elsevier</source><creator>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</creator><creatorcontrib>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</creatorcontrib><description>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process.
[Display omitted]
•Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2018.05.052</identifier><identifier>PMID: 30143212</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Correlation analysis ; Emission analysis ; Eutectics ; Fabrication ; Fourier transforms ; Gallium ; Gallium indium eutectic ; Gaseous analyte response ; Indium ; Luminescence ; Masking ; Organic chemistry ; Oxidation ; Photoluminescence ; Photons ; Porosity ; Porous silicon ; Scanning electron microscopy ; Silicon ; Spatially-dependent chemistries ; Spatially-dependent response</subject><ispartof>Analytica chimica acta, 2018-11, Vol.1032, p.147-153</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 22, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</citedby><cites>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</cites><orcidid>0000-0002-6559-9013 ; 0000-0002-1500-5969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30143212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collado, Crystal M.</creatorcontrib><creatorcontrib>Horner, Ian J.</creatorcontrib><creatorcontrib>Empey, Jennifer M.</creatorcontrib><creatorcontrib>Nguyen, Lisa N.Q.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process.
[Display omitted]
•Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</description><subject>Correlation analysis</subject><subject>Emission analysis</subject><subject>Eutectics</subject><subject>Fabrication</subject><subject>Fourier transforms</subject><subject>Gallium</subject><subject>Gallium indium eutectic</subject><subject>Gaseous analyte response</subject><subject>Indium</subject><subject>Luminescence</subject><subject>Masking</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Spatially-dependent chemistries</subject><subject>Spatially-dependent response</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhku34zyaxOKEKWqRKvdCz5TgT8JLEwXYq9dt3oi0cOCBZGtv6zdPMe4y9E7AXIOrL4955t5cg2j0c6MgXbCfaRlVaSf2S7QBAVbJu4Iyd53ykpxSgX7MzBYIQIXdsuXbjGNaJh7nfCq4FfQmeTy7_CvMPvqQQEy-RLzHFNfMcxuDjzIeYJlcC3XxCVzDzdQ6_V-R5oW8Sfax6XHDucS7c_8Qp5JIC5jfs1eDGjG-f6wW7__rl-9VNdXt3_e3q823ltdSlws6g90Z2BhT03rRStwPWTYdwOAzKNK5zBoURCkzT19pLZ4SvnfLY0o6oLtjHk-6SIo2Vi6UJPI6jm5H2sBKM0gCNloR--Ac9xjXNNJ0lj7Su66beKHGifIo5JxwsWTO59GgF2C0Oe7QUh93isHCgs_W8f1Zeuwn7vx1__Cfg0wlAsuIhYLLZB5w99iFRDraP4T_yT9OSnEo</recordid><startdate>20181122</startdate><enddate>20181122</enddate><creator>Collado, Crystal M.</creator><creator>Horner, Ian J.</creator><creator>Empey, Jennifer M.</creator><creator>Nguyen, Lisa N.Q.</creator><creator>Bright, Frank V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6559-9013</orcidid><orcidid>https://orcid.org/0000-0002-1500-5969</orcidid></search><sort><creationdate>20181122</creationdate><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><author>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Correlation analysis</topic><topic>Emission analysis</topic><topic>Eutectics</topic><topic>Fabrication</topic><topic>Fourier transforms</topic><topic>Gallium</topic><topic>Gallium indium eutectic</topic><topic>Gaseous analyte response</topic><topic>Indium</topic><topic>Luminescence</topic><topic>Masking</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Spatially-dependent chemistries</topic><topic>Spatially-dependent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Crystal M.</creatorcontrib><creatorcontrib>Horner, Ian J.</creatorcontrib><creatorcontrib>Empey, Jennifer M.</creatorcontrib><creatorcontrib>Nguyen, Lisa N.Q.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Crystal M.</au><au>Horner, Ian J.</au><au>Empey, Jennifer M.</au><au>Nguyen, Lisa N.Q.</au><au>Bright, Frank V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2018-11-22</date><risdate>2018</risdate><volume>1032</volume><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process.
[Display omitted]
•Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30143212</pmid><doi>10.1016/j.aca.2018.05.052</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6559-9013</orcidid><orcidid>https://orcid.org/0000-0002-1500-5969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2018-11, Vol.1032, p.147-153 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_2093400742 |
source | Elsevier |
subjects | Correlation analysis Emission analysis Eutectics Fabrication Fourier transforms Gallium Gallium indium eutectic Gaseous analyte response Indium Luminescence Masking Organic chemistry Oxidation Photoluminescence Photons Porosity Porous silicon Scanning electron microscopy Silicon Spatially-dependent chemistries Spatially-dependent response |
title | Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallium%20indium%20eutectic%20masking%20prior%20to%20porous%20silicon%20formation%20creates%20unique%20spatially-dependent%20chemistries&rft.jtitle=Analytica%20chimica%20acta&rft.au=Collado,%20Crystal%20M.&rft.date=2018-11-22&rft.volume=1032&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2018.05.052&rft_dat=%3Cproquest_cross%3E2093400742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124466762&rft_id=info:pmid/30143212&rfr_iscdi=true |