Loading…

Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries

We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning ele...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2018-11, Vol.1032, p.147-153
Main Authors: Collado, Crystal M., Horner, Ian J., Empey, Jennifer M., Nguyen, Lisa N.Q., Bright, Frank V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3
cites cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3
container_end_page 153
container_issue
container_start_page 147
container_title Analytica chimica acta
container_volume 1032
creator Collado, Crystal M.
Horner, Ian J.
Empey, Jennifer M.
Nguyen, Lisa N.Q.
Bright, Frank V.
description We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process. [Display omitted] •Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.
doi_str_mv 10.1016/j.aca.2018.05.052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2093400742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000326701830672X</els_id><sourcerecordid>2093400742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhku34zyaxOKEKWqRKvdCz5TgT8JLEwXYq9dt3oi0cOCBZGtv6zdPMe4y9E7AXIOrL4955t5cg2j0c6MgXbCfaRlVaSf2S7QBAVbJu4Iyd53ykpxSgX7MzBYIQIXdsuXbjGNaJh7nfCq4FfQmeTy7_CvMPvqQQEy-RLzHFNfMcxuDjzIeYJlcC3XxCVzDzdQ6_V-R5oW8Sfax6XHDucS7c_8Qp5JIC5jfs1eDGjG-f6wW7__rl-9VNdXt3_e3q823ltdSlws6g90Z2BhT03rRStwPWTYdwOAzKNK5zBoURCkzT19pLZ4SvnfLY0o6oLtjHk-6SIo2Vi6UJPI6jm5H2sBKM0gCNloR--Ac9xjXNNJ0lj7Su66beKHGifIo5JxwsWTO59GgF2C0Oe7QUh93isHCgs_W8f1Zeuwn7vx1__Cfg0wlAsuIhYLLZB5w99iFRDraP4T_yT9OSnEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124466762</pqid></control><display><type>article</type><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><source>Elsevier</source><creator>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</creator><creatorcontrib>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</creatorcontrib><description>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process. [Display omitted] •Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2018.05.052</identifier><identifier>PMID: 30143212</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Correlation analysis ; Emission analysis ; Eutectics ; Fabrication ; Fourier transforms ; Gallium ; Gallium indium eutectic ; Gaseous analyte response ; Indium ; Luminescence ; Masking ; Organic chemistry ; Oxidation ; Photoluminescence ; Photons ; Porosity ; Porous silicon ; Scanning electron microscopy ; Silicon ; Spatially-dependent chemistries ; Spatially-dependent response</subject><ispartof>Analytica chimica acta, 2018-11, Vol.1032, p.147-153</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 22, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</citedby><cites>FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</cites><orcidid>0000-0002-6559-9013 ; 0000-0002-1500-5969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30143212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collado, Crystal M.</creatorcontrib><creatorcontrib>Horner, Ian J.</creatorcontrib><creatorcontrib>Empey, Jennifer M.</creatorcontrib><creatorcontrib>Nguyen, Lisa N.Q.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process. [Display omitted] •Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</description><subject>Correlation analysis</subject><subject>Emission analysis</subject><subject>Eutectics</subject><subject>Fabrication</subject><subject>Fourier transforms</subject><subject>Gallium</subject><subject>Gallium indium eutectic</subject><subject>Gaseous analyte response</subject><subject>Indium</subject><subject>Luminescence</subject><subject>Masking</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Spatially-dependent chemistries</subject><subject>Spatially-dependent response</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhku34zyaxOKEKWqRKvdCz5TgT8JLEwXYq9dt3oi0cOCBZGtv6zdPMe4y9E7AXIOrL4955t5cg2j0c6MgXbCfaRlVaSf2S7QBAVbJu4Iyd53ykpxSgX7MzBYIQIXdsuXbjGNaJh7nfCq4FfQmeTy7_CvMPvqQQEy-RLzHFNfMcxuDjzIeYJlcC3XxCVzDzdQ6_V-R5oW8Sfax6XHDucS7c_8Qp5JIC5jfs1eDGjG-f6wW7__rl-9VNdXt3_e3q823ltdSlws6g90Z2BhT03rRStwPWTYdwOAzKNK5zBoURCkzT19pLZ4SvnfLY0o6oLtjHk-6SIo2Vi6UJPI6jm5H2sBKM0gCNloR--Ac9xjXNNJ0lj7Su66beKHGifIo5JxwsWTO59GgF2C0Oe7QUh93isHCgs_W8f1Zeuwn7vx1__Cfg0wlAsuIhYLLZB5w99iFRDraP4T_yT9OSnEo</recordid><startdate>20181122</startdate><enddate>20181122</enddate><creator>Collado, Crystal M.</creator><creator>Horner, Ian J.</creator><creator>Empey, Jennifer M.</creator><creator>Nguyen, Lisa N.Q.</creator><creator>Bright, Frank V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6559-9013</orcidid><orcidid>https://orcid.org/0000-0002-1500-5969</orcidid></search><sort><creationdate>20181122</creationdate><title>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</title><author>Collado, Crystal M. ; Horner, Ian J. ; Empey, Jennifer M. ; Nguyen, Lisa N.Q. ; Bright, Frank V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Correlation analysis</topic><topic>Emission analysis</topic><topic>Eutectics</topic><topic>Fabrication</topic><topic>Fourier transforms</topic><topic>Gallium</topic><topic>Gallium indium eutectic</topic><topic>Gaseous analyte response</topic><topic>Indium</topic><topic>Luminescence</topic><topic>Masking</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Spatially-dependent chemistries</topic><topic>Spatially-dependent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Crystal M.</creatorcontrib><creatorcontrib>Horner, Ian J.</creatorcontrib><creatorcontrib>Empey, Jennifer M.</creatorcontrib><creatorcontrib>Nguyen, Lisa N.Q.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Crystal M.</au><au>Horner, Ian J.</au><au>Empey, Jennifer M.</au><au>Nguyen, Lisa N.Q.</au><au>Bright, Frank V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2018-11-22</date><risdate>2018</risdate><volume>1032</volume><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>We demonstrate that gallium indium (GaIn) eutectic can be used to create interesting crystalline Si/porous silicon (cSi/pSi) platforms that exhibit unique analyte- and spatially-dependent photoluminescence (PL) responses. Here we characterize these cSi/pSi regions by using profilometry, scanning electron microscopy (SEM), wide-field PL microscopy, and Fourier transform infrared (FTIR) microscopy. As we move along a vector from the cSi/pSi interface out into “bulk” pSi, the: (i) analyte-dependent, PL-based response initially increases and then decreases; (ii) total PL emission intensity, in the absence of analyte, increases; (iii) pSi thickness increases; and (iv) relative O2Si-H to Si-H band amplitude ratio decreases. Thus, the analyte-dependent PL response magnitude is correlated to the extent of pSi oxidation; which can be easily controlled by using GaIn eutectic as a mask during the pSi fabrication process. [Display omitted] •Unique porous silicon (pSi) microarrays can be created by using GaIn masks.•Array elements show analyte- and spatially-dependent responses.•The relative O2Si-H to Si-H band amplitude ratio is spatially dependent.•Responses arise from competition between analytes and different pSi surface sites.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30143212</pmid><doi>10.1016/j.aca.2018.05.052</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6559-9013</orcidid><orcidid>https://orcid.org/0000-0002-1500-5969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2018-11, Vol.1032, p.147-153
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2093400742
source Elsevier
subjects Correlation analysis
Emission analysis
Eutectics
Fabrication
Fourier transforms
Gallium
Gallium indium eutectic
Gaseous analyte response
Indium
Luminescence
Masking
Organic chemistry
Oxidation
Photoluminescence
Photons
Porosity
Porous silicon
Scanning electron microscopy
Silicon
Spatially-dependent chemistries
Spatially-dependent response
title Gallium indium eutectic masking prior to porous silicon formation creates unique spatially-dependent chemistries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallium%20indium%20eutectic%20masking%20prior%20to%20porous%20silicon%20formation%20creates%20unique%20spatially-dependent%20chemistries&rft.jtitle=Analytica%20chimica%20acta&rft.au=Collado,%20Crystal%20M.&rft.date=2018-11-22&rft.volume=1032&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2018.05.052&rft_dat=%3Cproquest_cross%3E2093400742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-eb9ecc92b9030dc98248fe67be055f397aba9e1913097d64c2a91c6a3ce8104e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124466762&rft_id=info:pmid/30143212&rfr_iscdi=true