Loading…

Complicated evolutionary patterns of microRNAs in vertebrates

MicroRNAs (miRNAs) are a class of ∼22 nt long endogenous non-coding RNAs that play important regulatory roles in diverse organisms. Up to now, little is known about the evolutionary properties of these crucial regulators. Most miRNAs were thought to be phylogenetically conserved, but recently, a num...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Life sciences 2008-06, Vol.51 (6), p.552-559
Main Authors: Wang, XiaoWo, Zhang, XueGong, Li, YanDa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MicroRNAs (miRNAs) are a class of ∼22 nt long endogenous non-coding RNAs that play important regulatory roles in diverse organisms. Up to now, little is known about the evolutionary properties of these crucial regulators. Most miRNAs were thought to be phylogenetically conserved, but recently, a number of poorly-conserved miRNAs have been reported and miRNA innovation is shown to be an ongoing process. In this work, through the characterization of an miRNA super family, we studied the evolutionary patterns of miRNAs in vertebrates. Recently generated miRNAs seem to evolve rapidly during a certain period following their emergence. Multiple lineage-specific expansions were observed. Homolgous premiRNAs may produce mature products from the opposite stem arms following tandem duplications, which may have important contribution to miRNA innovation. Our observations of miRNAs’ complicated evolutionary patterns support the notion that these key regulatory molecules may play very active roles in evolution.
ISSN:1006-9305
1674-7305
1862-2798
1869-1889
DOI:10.1007/s11427-008-0075-z