Loading…

Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats

Induction of dopamine D3 receptor gene expression in 6‐hydroxydopamine‐lesioned rats by repeated administration of levodopa had been suggested to be responsible for behavioural sensitization developing in these animals. Using double in situ hybridization techniques, we show that D3 receptor mRNA ind...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2000-06, Vol.12 (6), p.2117-2123
Main Authors: Bordet, Régis, Ridray, Sophie, Schwartz, Jean-Charles, Sokoloff, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Induction of dopamine D3 receptor gene expression in 6‐hydroxydopamine‐lesioned rats by repeated administration of levodopa had been suggested to be responsible for behavioural sensitization developing in these animals. Using double in situ hybridization techniques, we show that D3 receptor mRNA induction after repeated administration of levodopa took place mainly in dynorphin/substance P‐expressing neurons of the direct striatonigral pathway. In agreement, induction of D3 receptor binding sites was evidenced, using 7‐[3H]hydroxy‐N,N‐di‐propyl‐2‐aminotetralin ([3H]7‐OH‐DPAT), in substantia nigra pars reticulata, the projection area of the direct nigrostriatonigral pathway. Changes in D3 receptor binding and behavioural sensitization during intermittent administration of levodopa paralleled changes in prodynorphin/preprotachykinin rather than preproenkephalin/prodynorphin and preproenkephalin/preprotachykinin mRNA ratios. Behavioural sensitization, induction of D3 receptor binding and changes in prodynorphin/preprotachykinin ratio were all prevented together when levodopa was continuously delivered or intermittently delivered in combination with r‐(+)‐7‐chloro‐8‐hydroxy‐3‐methyl‐1‐phenyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine (SCH 23390), a selective D1 receptor antagonist. Our results indicate that functional changes of the direct striatal output pathway, possibly through an interaction between D1 and D3 receptors at the level of terminals in the substantia nigra pars reticulata, are important for the development of behavioural sensitization.
ISSN:0953-816X
1460-9568
DOI:10.1046/j.1460-9568.2000.00089.x