Loading…

The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2018-09, Vol.561 (7721), p.132-136
Main Authors: Munschauer, Mathias, Nguyen, Celina T., Sirokman, Klara, Hartigan, Christina R., Hogstrom, Larson, Engreitz, Jesse M., Ulirsch, Jacob C., Fulco, Charles P., Subramanian, Vidya, Chen, Jenny, Schenone, Monica, Guttman, Mitchell, Carr, Steven A., Lander, Eric S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463
cites cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463
container_end_page 136
container_issue 7721
container_start_page 132
container_title Nature (London)
container_volume 561
creator Munschauer, Mathias
Nguyen, Celina T.
Sirokman, Klara
Hartigan, Christina R.
Hogstrom, Larson
Engreitz, Jesse M.
Ulirsch, Jacob C.
Fulco, Charles P.
Subramanian, Vidya
Chen, Jenny
Schenone, Monica
Guttman, Mitchell
Carr, Steven A.
Lander, Eric S.
description The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for maintaining genomic stability 8 , but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD -activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex. The long non-coding RNA NORAD interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.
doi_str_mv 10.1038/s41586-018-0453-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2095528215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572889939</galeid><sourcerecordid>A572889939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</originalsourceid><addsrcrecordid>eNp10l1r2zAUBmAxNta02w_YzRDrzcZwp09LvjTZV6GkIwvsUsiKnKnIlivZ0PbXVyHduowUXQh0nnMwxy8AbzA6w4jKT4lhLssCYVkgxmlx9wzMMBNlwUopnoMZQiRXJC2PwHFKVwghjgV7CY4owhwJwWfgx-q3hYvLZf0Z-t4sFzXUKdmu8TZBDccwBJdCZ6NOFprQDd7eQBPd6Iz2sA0Rbmyf6zCNunHejbevwItW-2RfP9wnYPX1y2r-vbi4_HY-ry8KIwgaC9IYxkrOZMkQEhWlqKxKLc1atGtjmjZf1Ii1pJRKK4nmQrO25Q0XuNGspCfg_W7sEMP1ZNOoOpeM9V73NkxJEVRxTiTBPNPT_-hVmGKfP04RjDnBlMjqUW20t8r1bRijNtuhquaCSFlVdKuKAyrvIG_Ih962Lj_v-XcHvBnctfoXnR1A-axt58zBqR_2GrIZ7c240VNK6vznct9-fNrWq1_zxb7GO21iSCnaVg3RdTreKozUNnNqlzmVM6e2mVN3ueftw36nprPrvx1_QpYB2YGUS_3Gxscf8PTUe-PW2_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115213289</pqid></control><display><type>article</type><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><source>Nature_系列刊</source><creator>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</creator><creatorcontrib>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</creatorcontrib><description>The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for maintaining genomic stability 8 , but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD -activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex. The long non-coding RNA NORAD interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0453-z</identifier><identifier>PMID: 30150775</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/31 ; 14/19 ; 38/32 ; 42/89 ; 631/337/384/2568 ; 631/45/612/1230 ; 82/58 ; Antisense RNA ; Binding Sites ; Biochemistry ; Bioinformatics ; Cell Cycle ; Cell Cycle Proteins - metabolism ; Cell Nucleus - metabolism ; Cell Survival ; Chromosome Segregation ; Damage ; Defects ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Damage ; DNA Repair ; DNA Repair Enzymes - metabolism ; DNA Replication ; DNA topoisomerase ; DNA Topoisomerases, Type I - metabolism ; Experiments ; Gene expression ; Genomes ; Genomic Instability ; Genomics ; Heterogeneous-Nuclear Ribonucleoproteins - metabolism ; Human genome ; Humanities and Social Sciences ; Humans ; Instability ; Letter ; Localization ; Mammals ; Mass Spectrometry ; Mass spectroscopy ; Methods ; multidisciplinary ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Non-coding RNA ; Nuclear Proteins - metabolism ; Nuclei (cytology) ; Phenotypes ; Physiological aspects ; Protein Binding ; Protein purification ; Proteins ; Proteomics ; Replication ; Ribonucleic acid ; Ribonucleoproteins - metabolism ; RNA ; RNA sequencing ; RNA Splicing Factors - metabolism ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA-binding protein ; RNA-Binding Proteins - metabolism ; Science ; Science (multidisciplinary) ; Scientific imaging ; Software ; Spectroscopy ; Stability ; Suppressors ; Topoisomerases ; Transcription Factors - metabolism</subject><ispartof>Nature (London), 2018-09, Vol.561 (7721), p.132-136</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 6, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</citedby><cites>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30150775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munschauer, Mathias</creatorcontrib><creatorcontrib>Nguyen, Celina T.</creatorcontrib><creatorcontrib>Sirokman, Klara</creatorcontrib><creatorcontrib>Hartigan, Christina R.</creatorcontrib><creatorcontrib>Hogstrom, Larson</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Ulirsch, Jacob C.</creatorcontrib><creatorcontrib>Fulco, Charles P.</creatorcontrib><creatorcontrib>Subramanian, Vidya</creatorcontrib><creatorcontrib>Chen, Jenny</creatorcontrib><creatorcontrib>Schenone, Monica</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for maintaining genomic stability 8 , but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD -activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex. The long non-coding RNA NORAD interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</description><subject>13/109</subject><subject>13/31</subject><subject>14/19</subject><subject>38/32</subject><subject>42/89</subject><subject>631/337/384/2568</subject><subject>631/45/612/1230</subject><subject>82/58</subject><subject>Antisense RNA</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Cell Cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Survival</subject><subject>Chromosome Segregation</subject><subject>Damage</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA Replication</subject><subject>DNA topoisomerase</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</subject><subject>Human genome</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Instability</subject><subject>Letter</subject><subject>Localization</subject><subject>Mammals</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Non-coding RNA</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclei (cytology)</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein purification</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA Splicing Factors - metabolism</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>Suppressors</subject><subject>Topoisomerases</subject><subject>Transcription Factors - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10l1r2zAUBmAxNta02w_YzRDrzcZwp09LvjTZV6GkIwvsUsiKnKnIlivZ0PbXVyHduowUXQh0nnMwxy8AbzA6w4jKT4lhLssCYVkgxmlx9wzMMBNlwUopnoMZQiRXJC2PwHFKVwghjgV7CY4owhwJwWfgx-q3hYvLZf0Z-t4sFzXUKdmu8TZBDccwBJdCZ6NOFprQDd7eQBPd6Iz2sA0Rbmyf6zCNunHejbevwItW-2RfP9wnYPX1y2r-vbi4_HY-ry8KIwgaC9IYxkrOZMkQEhWlqKxKLc1atGtjmjZf1Ii1pJRKK4nmQrO25Q0XuNGspCfg_W7sEMP1ZNOoOpeM9V73NkxJEVRxTiTBPNPT_-hVmGKfP04RjDnBlMjqUW20t8r1bRijNtuhquaCSFlVdKuKAyrvIG_Ih962Lj_v-XcHvBnctfoXnR1A-axt58zBqR_2GrIZ7c240VNK6vznct9-fNrWq1_zxb7GO21iSCnaVg3RdTreKozUNnNqlzmVM6e2mVN3ueftw36nprPrvx1_QpYB2YGUS_3Gxscf8PTUe-PW2_8</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Munschauer, Mathias</creator><creator>Nguyen, Celina T.</creator><creator>Sirokman, Klara</creator><creator>Hartigan, Christina R.</creator><creator>Hogstrom, Larson</creator><creator>Engreitz, Jesse M.</creator><creator>Ulirsch, Jacob C.</creator><creator>Fulco, Charles P.</creator><creator>Subramanian, Vidya</creator><creator>Chen, Jenny</creator><creator>Schenone, Monica</creator><creator>Guttman, Mitchell</creator><creator>Carr, Steven A.</creator><creator>Lander, Eric S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><author>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/109</topic><topic>13/31</topic><topic>14/19</topic><topic>38/32</topic><topic>42/89</topic><topic>631/337/384/2568</topic><topic>631/45/612/1230</topic><topic>82/58</topic><topic>Antisense RNA</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Cell Cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Survival</topic><topic>Chromosome Segregation</topic><topic>Damage</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA Replication</topic><topic>DNA topoisomerase</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</topic><topic>Human genome</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Instability</topic><topic>Letter</topic><topic>Localization</topic><topic>Mammals</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Non-coding RNA</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclei (cytology)</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein purification</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA Splicing Factors - metabolism</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>Suppressors</topic><topic>Topoisomerases</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munschauer, Mathias</creatorcontrib><creatorcontrib>Nguyen, Celina T.</creatorcontrib><creatorcontrib>Sirokman, Klara</creatorcontrib><creatorcontrib>Hartigan, Christina R.</creatorcontrib><creatorcontrib>Hogstrom, Larson</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Ulirsch, Jacob C.</creatorcontrib><creatorcontrib>Fulco, Charles P.</creatorcontrib><creatorcontrib>Subramanian, Vidya</creatorcontrib><creatorcontrib>Chen, Jenny</creatorcontrib><creatorcontrib>Schenone, Monica</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munschauer, Mathias</au><au>Nguyen, Celina T.</au><au>Sirokman, Klara</au><au>Hartigan, Christina R.</au><au>Hogstrom, Larson</au><au>Engreitz, Jesse M.</au><au>Ulirsch, Jacob C.</au><au>Fulco, Charles P.</au><au>Subramanian, Vidya</au><au>Chen, Jenny</au><au>Schenone, Monica</au><au>Guttman, Mitchell</au><au>Carr, Steven A.</au><au>Lander, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-09</date><risdate>2018</risdate><volume>561</volume><issue>7721</issue><spage>132</spage><epage>136</epage><pages>132-136</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for maintaining genomic stability 8 , but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD -activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex. The long non-coding RNA NORAD interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30150775</pmid><doi>10.1038/s41586-018-0453-z</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-09, Vol.561 (7721), p.132-136
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2095528215
source Nature_系列刊
subjects 13/109
13/31
14/19
38/32
42/89
631/337/384/2568
631/45/612/1230
82/58
Antisense RNA
Binding Sites
Biochemistry
Bioinformatics
Cell Cycle
Cell Cycle Proteins - metabolism
Cell Nucleus - metabolism
Cell Survival
Chromosome Segregation
Damage
Defects
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Damage
DNA Repair
DNA Repair Enzymes - metabolism
DNA Replication
DNA topoisomerase
DNA Topoisomerases, Type I - metabolism
Experiments
Gene expression
Genomes
Genomic Instability
Genomics
Heterogeneous-Nuclear Ribonucleoproteins - metabolism
Human genome
Humanities and Social Sciences
Humans
Instability
Letter
Localization
Mammals
Mass Spectrometry
Mass spectroscopy
Methods
multidisciplinary
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Non-coding RNA
Nuclear Proteins - metabolism
Nuclei (cytology)
Phenotypes
Physiological aspects
Protein Binding
Protein purification
Proteins
Proteomics
Replication
Ribonucleic acid
Ribonucleoproteins - metabolism
RNA
RNA sequencing
RNA Splicing Factors - metabolism
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA-binding protein
RNA-Binding Proteins - metabolism
Science
Science (multidisciplinary)
Scientific imaging
Software
Spectroscopy
Stability
Suppressors
Topoisomerases
Transcription Factors - metabolism
title The NORAD lncRNA assembles a topoisomerase complex critical for genome stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NORAD%20lncRNA%20assembles%20a%20topoisomerase%20complex%20critical%20for%20genome%20stability&rft.jtitle=Nature%20(London)&rft.au=Munschauer,%20Mathias&rft.date=2018-09&rft.volume=561&rft.issue=7721&rft.spage=132&rft.epage=136&rft.pages=132-136&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0453-z&rft_dat=%3Cgale_proqu%3EA572889939%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115213289&rft_id=info:pmid/30150775&rft_galeid=A572889939&rfr_iscdi=true