Loading…
The NORAD lncRNA assembles a topoisomerase complex critical for genome stability
The human genome contains thousands of long non-coding RNAs 1 , but specific biological functions and biochemical mechanisms have been discovered for only about a dozen 2 – 7 . A specific long non-coding RNA—non-coding RNA activated by DNA damage ( NORAD )—has recently been shown to be required for...
Saved in:
Published in: | Nature (London) 2018-09, Vol.561 (7721), p.132-136 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463 |
---|---|
cites | cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463 |
container_end_page | 136 |
container_issue | 7721 |
container_start_page | 132 |
container_title | Nature (London) |
container_volume | 561 |
creator | Munschauer, Mathias Nguyen, Celina T. Sirokman, Klara Hartigan, Christina R. Hogstrom, Larson Engreitz, Jesse M. Ulirsch, Jacob C. Fulco, Charles P. Subramanian, Vidya Chen, Jenny Schenone, Monica Guttman, Mitchell Carr, Steven A. Lander, Eric S. |
description | The human genome contains thousands of long non-coding RNAs
1
, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen
2
–
7
. A specific long non-coding RNA—non-coding RNA activated by DNA damage (
NORAD
)—has recently been shown to be required for maintaining genomic stability
8
, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with
NORAD
in living cells. We show that
NORAD
interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular,
NORAD
interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that
NORAD
controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term
NORAD
-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for
NORAD
or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of
NORAD
in
trans
can rescue defects caused by
NORAD
depletion, but rescue is significantly impaired when the RBMX-binding site in
NORAD
is deleted. Our results demonstrate that the interaction between
NORAD
and RBMX is important for
NORAD
function, and that
NORAD
is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.
The long non-coding RNA
NORAD
interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability. |
doi_str_mv | 10.1038/s41586-018-0453-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2095528215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572889939</galeid><sourcerecordid>A572889939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</originalsourceid><addsrcrecordid>eNp10l1r2zAUBmAxNta02w_YzRDrzcZwp09LvjTZV6GkIwvsUsiKnKnIlivZ0PbXVyHduowUXQh0nnMwxy8AbzA6w4jKT4lhLssCYVkgxmlx9wzMMBNlwUopnoMZQiRXJC2PwHFKVwghjgV7CY4owhwJwWfgx-q3hYvLZf0Z-t4sFzXUKdmu8TZBDccwBJdCZ6NOFprQDd7eQBPd6Iz2sA0Rbmyf6zCNunHejbevwItW-2RfP9wnYPX1y2r-vbi4_HY-ry8KIwgaC9IYxkrOZMkQEhWlqKxKLc1atGtjmjZf1Ii1pJRKK4nmQrO25Q0XuNGspCfg_W7sEMP1ZNOoOpeM9V73NkxJEVRxTiTBPNPT_-hVmGKfP04RjDnBlMjqUW20t8r1bRijNtuhquaCSFlVdKuKAyrvIG_Ih962Lj_v-XcHvBnctfoXnR1A-axt58zBqR_2GrIZ7c240VNK6vznct9-fNrWq1_zxb7GO21iSCnaVg3RdTreKozUNnNqlzmVM6e2mVN3ueftw36nprPrvx1_QpYB2YGUS_3Gxscf8PTUe-PW2_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115213289</pqid></control><display><type>article</type><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><source>Nature_系列刊</source><creator>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</creator><creatorcontrib>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</creatorcontrib><description>The human genome contains thousands of long non-coding RNAs
1
, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen
2
–
7
. A specific long non-coding RNA—non-coding RNA activated by DNA damage (
NORAD
)—has recently been shown to be required for maintaining genomic stability
8
, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with
NORAD
in living cells. We show that
NORAD
interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular,
NORAD
interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that
NORAD
controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term
NORAD
-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for
NORAD
or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of
NORAD
in
trans
can rescue defects caused by
NORAD
depletion, but rescue is significantly impaired when the RBMX-binding site in
NORAD
is deleted. Our results demonstrate that the interaction between
NORAD
and RBMX is important for
NORAD
function, and that
NORAD
is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.
The long non-coding RNA
NORAD
interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0453-z</identifier><identifier>PMID: 30150775</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/31 ; 14/19 ; 38/32 ; 42/89 ; 631/337/384/2568 ; 631/45/612/1230 ; 82/58 ; Antisense RNA ; Binding Sites ; Biochemistry ; Bioinformatics ; Cell Cycle ; Cell Cycle Proteins - metabolism ; Cell Nucleus - metabolism ; Cell Survival ; Chromosome Segregation ; Damage ; Defects ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Damage ; DNA Repair ; DNA Repair Enzymes - metabolism ; DNA Replication ; DNA topoisomerase ; DNA Topoisomerases, Type I - metabolism ; Experiments ; Gene expression ; Genomes ; Genomic Instability ; Genomics ; Heterogeneous-Nuclear Ribonucleoproteins - metabolism ; Human genome ; Humanities and Social Sciences ; Humans ; Instability ; Letter ; Localization ; Mammals ; Mass Spectrometry ; Mass spectroscopy ; Methods ; multidisciplinary ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Non-coding RNA ; Nuclear Proteins - metabolism ; Nuclei (cytology) ; Phenotypes ; Physiological aspects ; Protein Binding ; Protein purification ; Proteins ; Proteomics ; Replication ; Ribonucleic acid ; Ribonucleoproteins - metabolism ; RNA ; RNA sequencing ; RNA Splicing Factors - metabolism ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA-binding protein ; RNA-Binding Proteins - metabolism ; Science ; Science (multidisciplinary) ; Scientific imaging ; Software ; Spectroscopy ; Stability ; Suppressors ; Topoisomerases ; Transcription Factors - metabolism</subject><ispartof>Nature (London), 2018-09, Vol.561 (7721), p.132-136</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 6, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</citedby><cites>FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30150775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munschauer, Mathias</creatorcontrib><creatorcontrib>Nguyen, Celina T.</creatorcontrib><creatorcontrib>Sirokman, Klara</creatorcontrib><creatorcontrib>Hartigan, Christina R.</creatorcontrib><creatorcontrib>Hogstrom, Larson</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Ulirsch, Jacob C.</creatorcontrib><creatorcontrib>Fulco, Charles P.</creatorcontrib><creatorcontrib>Subramanian, Vidya</creatorcontrib><creatorcontrib>Chen, Jenny</creatorcontrib><creatorcontrib>Schenone, Monica</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The human genome contains thousands of long non-coding RNAs
1
, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen
2
–
7
. A specific long non-coding RNA—non-coding RNA activated by DNA damage (
NORAD
)—has recently been shown to be required for maintaining genomic stability
8
, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with
NORAD
in living cells. We show that
NORAD
interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular,
NORAD
interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that
NORAD
controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term
NORAD
-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for
NORAD
or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of
NORAD
in
trans
can rescue defects caused by
NORAD
depletion, but rescue is significantly impaired when the RBMX-binding site in
NORAD
is deleted. Our results demonstrate that the interaction between
NORAD
and RBMX is important for
NORAD
function, and that
NORAD
is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.
The long non-coding RNA
NORAD
interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</description><subject>13/109</subject><subject>13/31</subject><subject>14/19</subject><subject>38/32</subject><subject>42/89</subject><subject>631/337/384/2568</subject><subject>631/45/612/1230</subject><subject>82/58</subject><subject>Antisense RNA</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Cell Cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Survival</subject><subject>Chromosome Segregation</subject><subject>Damage</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA Replication</subject><subject>DNA topoisomerase</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</subject><subject>Human genome</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Instability</subject><subject>Letter</subject><subject>Localization</subject><subject>Mammals</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Non-coding RNA</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclei (cytology)</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein purification</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA Splicing Factors - metabolism</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>Suppressors</subject><subject>Topoisomerases</subject><subject>Transcription Factors - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10l1r2zAUBmAxNta02w_YzRDrzcZwp09LvjTZV6GkIwvsUsiKnKnIlivZ0PbXVyHduowUXQh0nnMwxy8AbzA6w4jKT4lhLssCYVkgxmlx9wzMMBNlwUopnoMZQiRXJC2PwHFKVwghjgV7CY4owhwJwWfgx-q3hYvLZf0Z-t4sFzXUKdmu8TZBDccwBJdCZ6NOFprQDd7eQBPd6Iz2sA0Rbmyf6zCNunHejbevwItW-2RfP9wnYPX1y2r-vbi4_HY-ry8KIwgaC9IYxkrOZMkQEhWlqKxKLc1atGtjmjZf1Ii1pJRKK4nmQrO25Q0XuNGspCfg_W7sEMP1ZNOoOpeM9V73NkxJEVRxTiTBPNPT_-hVmGKfP04RjDnBlMjqUW20t8r1bRijNtuhquaCSFlVdKuKAyrvIG_Ih962Lj_v-XcHvBnctfoXnR1A-axt58zBqR_2GrIZ7c240VNK6vznct9-fNrWq1_zxb7GO21iSCnaVg3RdTreKozUNnNqlzmVM6e2mVN3ueftw36nprPrvx1_QpYB2YGUS_3Gxscf8PTUe-PW2_8</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Munschauer, Mathias</creator><creator>Nguyen, Celina T.</creator><creator>Sirokman, Klara</creator><creator>Hartigan, Christina R.</creator><creator>Hogstrom, Larson</creator><creator>Engreitz, Jesse M.</creator><creator>Ulirsch, Jacob C.</creator><creator>Fulco, Charles P.</creator><creator>Subramanian, Vidya</creator><creator>Chen, Jenny</creator><creator>Schenone, Monica</creator><creator>Guttman, Mitchell</creator><creator>Carr, Steven A.</creator><creator>Lander, Eric S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</title><author>Munschauer, Mathias ; Nguyen, Celina T. ; Sirokman, Klara ; Hartigan, Christina R. ; Hogstrom, Larson ; Engreitz, Jesse M. ; Ulirsch, Jacob C. ; Fulco, Charles P. ; Subramanian, Vidya ; Chen, Jenny ; Schenone, Monica ; Guttman, Mitchell ; Carr, Steven A. ; Lander, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/109</topic><topic>13/31</topic><topic>14/19</topic><topic>38/32</topic><topic>42/89</topic><topic>631/337/384/2568</topic><topic>631/45/612/1230</topic><topic>82/58</topic><topic>Antisense RNA</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Cell Cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Survival</topic><topic>Chromosome Segregation</topic><topic>Damage</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA Replication</topic><topic>DNA topoisomerase</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</topic><topic>Human genome</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Instability</topic><topic>Letter</topic><topic>Localization</topic><topic>Mammals</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Non-coding RNA</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclei (cytology)</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein purification</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA Splicing Factors - metabolism</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>Suppressors</topic><topic>Topoisomerases</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munschauer, Mathias</creatorcontrib><creatorcontrib>Nguyen, Celina T.</creatorcontrib><creatorcontrib>Sirokman, Klara</creatorcontrib><creatorcontrib>Hartigan, Christina R.</creatorcontrib><creatorcontrib>Hogstrom, Larson</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><creatorcontrib>Ulirsch, Jacob C.</creatorcontrib><creatorcontrib>Fulco, Charles P.</creatorcontrib><creatorcontrib>Subramanian, Vidya</creatorcontrib><creatorcontrib>Chen, Jenny</creatorcontrib><creatorcontrib>Schenone, Monica</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><creatorcontrib>Carr, Steven A.</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munschauer, Mathias</au><au>Nguyen, Celina T.</au><au>Sirokman, Klara</au><au>Hartigan, Christina R.</au><au>Hogstrom, Larson</au><au>Engreitz, Jesse M.</au><au>Ulirsch, Jacob C.</au><au>Fulco, Charles P.</au><au>Subramanian, Vidya</au><au>Chen, Jenny</au><au>Schenone, Monica</au><au>Guttman, Mitchell</au><au>Carr, Steven A.</au><au>Lander, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-09</date><risdate>2018</risdate><volume>561</volume><issue>7721</issue><spage>132</spage><epage>136</epage><pages>132-136</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The human genome contains thousands of long non-coding RNAs
1
, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen
2
–
7
. A specific long non-coding RNA—non-coding RNA activated by DNA damage (
NORAD
)—has recently been shown to be required for maintaining genomic stability
8
, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with
NORAD
in living cells. We show that
NORAD
interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular,
NORAD
interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that
NORAD
controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term
NORAD
-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for
NORAD
or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of
NORAD
in
trans
can rescue defects caused by
NORAD
depletion, but rescue is significantly impaired when the RBMX-binding site in
NORAD
is deleted. Our results demonstrate that the interaction between
NORAD
and RBMX is important for
NORAD
function, and that
NORAD
is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.
The long non-coding RNA
NORAD
interacts with proteins involved in DNA replication and repair, and controls the ability of RBMX to form a ribonucleoprotein complex that helps to maintain genomic stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30150775</pmid><doi>10.1038/s41586-018-0453-z</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-09, Vol.561 (7721), p.132-136 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2095528215 |
source | Nature_系列刊 |
subjects | 13/109 13/31 14/19 38/32 42/89 631/337/384/2568 631/45/612/1230 82/58 Antisense RNA Binding Sites Biochemistry Bioinformatics Cell Cycle Cell Cycle Proteins - metabolism Cell Nucleus - metabolism Cell Survival Chromosome Segregation Damage Defects Deoxyribonucleic acid DNA DNA biosynthesis DNA Damage DNA Repair DNA Repair Enzymes - metabolism DNA Replication DNA topoisomerase DNA Topoisomerases, Type I - metabolism Experiments Gene expression Genomes Genomic Instability Genomics Heterogeneous-Nuclear Ribonucleoproteins - metabolism Human genome Humanities and Social Sciences Humans Instability Letter Localization Mammals Mass Spectrometry Mass spectroscopy Methods multidisciplinary Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Non-coding RNA Nuclear Proteins - metabolism Nuclei (cytology) Phenotypes Physiological aspects Protein Binding Protein purification Proteins Proteomics Replication Ribonucleic acid Ribonucleoproteins - metabolism RNA RNA sequencing RNA Splicing Factors - metabolism RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA-binding protein RNA-Binding Proteins - metabolism Science Science (multidisciplinary) Scientific imaging Software Spectroscopy Stability Suppressors Topoisomerases Transcription Factors - metabolism |
title | The NORAD lncRNA assembles a topoisomerase complex critical for genome stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NORAD%20lncRNA%20assembles%20a%20topoisomerase%20complex%20critical%20for%20genome%20stability&rft.jtitle=Nature%20(London)&rft.au=Munschauer,%20Mathias&rft.date=2018-09&rft.volume=561&rft.issue=7721&rft.spage=132&rft.epage=136&rft.pages=132-136&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0453-z&rft_dat=%3Cgale_proqu%3EA572889939%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c720t-2bc446548640079330696a8cd7fdccbf7fd3c7d83338e82a57a4ff5b571ba463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115213289&rft_id=info:pmid/30150775&rft_galeid=A572889939&rfr_iscdi=true |