Loading…
Quantum Walk in Momentum Space with a Bose-Einstein Condensate
We present a discrete-time, one-dimensional quantum walk based on the entanglement between the momentum of ultracold rubidium atoms (the walk space) and two internal atomic states (the "coin" degree of freedom). Our scheme is highly flexible and can provide a platform for a wide range of a...
Saved in:
Published in: | Physical review letters 2018-08, Vol.121 (7), p.070402-070402, Article 070402 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a discrete-time, one-dimensional quantum walk based on the entanglement between the momentum of ultracold rubidium atoms (the walk space) and two internal atomic states (the "coin" degree of freedom). Our scheme is highly flexible and can provide a platform for a wide range of applications such as quantum search algorithms, the observation of topological phases, and the realization of walks with higher dimensionality. Along with the investigation of the quantum-to-classical transition, we demonstrate the distinctive features of a quantum walk and contrast them to those of its classical counterpart. Also, by manipulating either the walk or coin operator, we show how the walk dynamics can be steered or even reversed. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.070402 |