Loading…

In Situ Observations of Preferential Pickup Ion Heating at an Interplanetary Shock

Nonthermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed that PUIs should be preferentially heated at quasiperpendicular shocks compared to thermal SWIs. We pr...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018-08, Vol.121 (7), p.075102-075102, Article 075102
Main Authors: Zirnstein, E J, McComas, D J, Kumar, R, Elliott, H A, Szalay, J R, Olkin, C B, Spencer, J, Stern, S A, Young, L A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonthermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed that PUIs should be preferentially heated at quasiperpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H^{+}) PUIs at an interplanetary shock by the New Horizons' Solar Wind Around Pluto (SWAP) instrument at ∼34  au from the Sun. At this shock, H^{+} PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H^{+} SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H^{+} SWIs lose ∼85% of their energy flux across the shock and H^{+} PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H^{+} PUIs is approximately six times that of H^{+} SWIs. We find that H^{+} PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.075102