Loading…

Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method

Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-09, Vol.14 (39), p.e1802694-n/a
Main Authors: Lu, Haiyan, Ai, Fangxing, Jia, Yanlong, Tang, Chunyan, Zhang, Xinhe, Huang, Yunhui, Yang, Hanxi, Cao, Yuliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73
cites cdi_FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73
container_end_page n/a
container_issue 39
container_start_page e1802694
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Lu, Haiyan
Ai, Fangxing
Jia, Yanlong
Tang, Chunyan
Zhang, Xinhe
Huang, Yunhui
Yang, Hanxi
Cao, Yuliang
description Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from the unclear understanding of the Na+ storage mechanism in hard carbon. In this work, a series of hard carbons with different microstructures are synthesized through an “up to down” approach by using a simple ball‐milling method to illustrate the sodium‐ion storage mechanism. The results demonstrate that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower ICE, which provides further evidence to the “adsorption–insertion” mechanism. This work might give a new perspective to design hard carbon material with a proper structure for efficient sodium‐ion storage to develop high‐performance sodium‐ion batteries. The mechanism of Na+ storage into hard carbon is investigated using ball‐milled hard carbon, which demonstrates that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower initial Coulombic efficiency, providing further evidence to the “adsorption–insertion” mechanism.
doi_str_mv 10.1002/smll.201802694
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099040588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099040588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EoqVw5YgsceGyy8zkj50jLIVW2gikhbPlxE7XlRMvdqJ2bzwCz8iTkNWWReLCaebwzTcz-jH2EmGJAPQ29d4vCVAClVX-iJ1jidmilFQ9PvUIZ-xZSrcAGVIunrKzDFAURSHP2f3l_c6H6IYbvgnGTf2vHz-vw8A3Y4j6xvLatls9uNRzN_ArHQ1f6diEIfE7N275B9d1Ntph5LVrY0hjnNpxipZ_iXanozW82fP32vtZWzvvD3tqO26Dec6edNon--KhXrBvHy-_rq4W68-frlfv1os2n49dZHmJBqgFBKONFnmHBUkrm4bKIqemlFLkWGjRGqnJUNUBdSg0QSZF1Yrsgr05encxfJ9sGlXvUmu914MNU1IEVQU5FFLO6Ot_0NswxWG-ThEiIQmS5Uwtj9Th3xRtp3bR9TruFYI6ZKIOmahTJvPAqwft1PTWnPA_IcxAdQTunLf7_-jUpl6v_8p_A3Odmjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112127286</pqid></control><display><type>article</type><title>Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lu, Haiyan ; Ai, Fangxing ; Jia, Yanlong ; Tang, Chunyan ; Zhang, Xinhe ; Huang, Yunhui ; Yang, Hanxi ; Cao, Yuliang</creator><creatorcontrib>Lu, Haiyan ; Ai, Fangxing ; Jia, Yanlong ; Tang, Chunyan ; Zhang, Xinhe ; Huang, Yunhui ; Yang, Hanxi ; Cao, Yuliang</creatorcontrib><description>Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from the unclear understanding of the Na+ storage mechanism in hard carbon. In this work, a series of hard carbons with different microstructures are synthesized through an “up to down” approach by using a simple ball‐milling method to illustrate the sodium‐ion storage mechanism. The results demonstrate that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower ICE, which provides further evidence to the “adsorption–insertion” mechanism. This work might give a new perspective to design hard carbon material with a proper structure for efficient sodium‐ion storage to develop high‐performance sodium‐ion batteries. The mechanism of Na+ storage into hard carbon is investigated using ball‐milled hard carbon, which demonstrates that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower initial Coulombic efficiency, providing further evidence to the “adsorption–insertion” mechanism.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201802694</identifier><identifier>PMID: 30175558</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; ball milling ; Carbon ; hard carbon ; Ion storage ; mechanism ; micro–nanostructure ; Nanotechnology ; Sodium ; Sodium-ion batteries ; Storage batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (39), p.e1802694-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73</citedby><cites>FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73</cites><orcidid>0000-0001-6092-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30175558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Ai, Fangxing</creatorcontrib><creatorcontrib>Jia, Yanlong</creatorcontrib><creatorcontrib>Tang, Chunyan</creatorcontrib><creatorcontrib>Zhang, Xinhe</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Yang, Hanxi</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><title>Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from the unclear understanding of the Na+ storage mechanism in hard carbon. In this work, a series of hard carbons with different microstructures are synthesized through an “up to down” approach by using a simple ball‐milling method to illustrate the sodium‐ion storage mechanism. The results demonstrate that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower ICE, which provides further evidence to the “adsorption–insertion” mechanism. This work might give a new perspective to design hard carbon material with a proper structure for efficient sodium‐ion storage to develop high‐performance sodium‐ion batteries. The mechanism of Na+ storage into hard carbon is investigated using ball‐milled hard carbon, which demonstrates that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower initial Coulombic efficiency, providing further evidence to the “adsorption–insertion” mechanism.</description><subject>Anodes</subject><subject>ball milling</subject><subject>Carbon</subject><subject>hard carbon</subject><subject>Ion storage</subject><subject>mechanism</subject><subject>micro–nanostructure</subject><subject>Nanotechnology</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EoqVw5YgsceGyy8zkj50jLIVW2gikhbPlxE7XlRMvdqJ2bzwCz8iTkNWWReLCaebwzTcz-jH2EmGJAPQ29d4vCVAClVX-iJ1jidmilFQ9PvUIZ-xZSrcAGVIunrKzDFAURSHP2f3l_c6H6IYbvgnGTf2vHz-vw8A3Y4j6xvLatls9uNRzN_ArHQ1f6diEIfE7N275B9d1Ntph5LVrY0hjnNpxipZ_iXanozW82fP32vtZWzvvD3tqO26Dec6edNon--KhXrBvHy-_rq4W68-frlfv1os2n49dZHmJBqgFBKONFnmHBUkrm4bKIqemlFLkWGjRGqnJUNUBdSg0QSZF1Yrsgr05encxfJ9sGlXvUmu914MNU1IEVQU5FFLO6Ot_0NswxWG-ThEiIQmS5Uwtj9Th3xRtp3bR9TruFYI6ZKIOmahTJvPAqwft1PTWnPA_IcxAdQTunLf7_-jUpl6v_8p_A3Odmjg</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Lu, Haiyan</creator><creator>Ai, Fangxing</creator><creator>Jia, Yanlong</creator><creator>Tang, Chunyan</creator><creator>Zhang, Xinhe</creator><creator>Huang, Yunhui</creator><creator>Yang, Hanxi</creator><creator>Cao, Yuliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6092-5652</orcidid></search><sort><creationdate>201809</creationdate><title>Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method</title><author>Lu, Haiyan ; Ai, Fangxing ; Jia, Yanlong ; Tang, Chunyan ; Zhang, Xinhe ; Huang, Yunhui ; Yang, Hanxi ; Cao, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>ball milling</topic><topic>Carbon</topic><topic>hard carbon</topic><topic>Ion storage</topic><topic>mechanism</topic><topic>micro–nanostructure</topic><topic>Nanotechnology</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Ai, Fangxing</creatorcontrib><creatorcontrib>Jia, Yanlong</creatorcontrib><creatorcontrib>Tang, Chunyan</creatorcontrib><creatorcontrib>Zhang, Xinhe</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Yang, Hanxi</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Haiyan</au><au>Ai, Fangxing</au><au>Jia, Yanlong</au><au>Tang, Chunyan</au><au>Zhang, Xinhe</au><au>Huang, Yunhui</au><au>Yang, Hanxi</au><au>Cao, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-09</date><risdate>2018</risdate><volume>14</volume><issue>39</issue><spage>e1802694</spage><epage>n/a</epage><pages>e1802694-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from the unclear understanding of the Na+ storage mechanism in hard carbon. In this work, a series of hard carbons with different microstructures are synthesized through an “up to down” approach by using a simple ball‐milling method to illustrate the sodium‐ion storage mechanism. The results demonstrate that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower ICE, which provides further evidence to the “adsorption–insertion” mechanism. This work might give a new perspective to design hard carbon material with a proper structure for efficient sodium‐ion storage to develop high‐performance sodium‐ion batteries. The mechanism of Na+ storage into hard carbon is investigated using ball‐milled hard carbon, which demonstrates that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower initial Coulombic efficiency, providing further evidence to the “adsorption–insertion” mechanism.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30175558</pmid><doi>10.1002/smll.201802694</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6092-5652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (39), p.e1802694-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2099040588
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
ball milling
Carbon
hard carbon
Ion storage
mechanism
micro–nanostructure
Nanotechnology
Sodium
Sodium-ion batteries
Storage batteries
title Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Sodium%E2%80%90Ion%20Storage%20Mechanism%20in%20Hard%20Carbons%20with%20Different%20Microstructure%20Prepared%20by%20Ball%E2%80%90Milling%20Method&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lu,%20Haiyan&rft.date=2018-09&rft.volume=14&rft.issue=39&rft.spage=e1802694&rft.epage=n/a&rft.pages=e1802694-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201802694&rft_dat=%3Cproquest_cross%3E2099040588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4124-3461d02c010dada74f1528e8bb26542b6887415a7cd8a2d29f02f17a203879c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2112127286&rft_id=info:pmid/30175558&rfr_iscdi=true