Loading…
The role of two-component regulatory system in β-lactam antibiotics resistance
The irrational use of antibiotics in agriculture and in the medical field has led to a variety of pathogenic microorganisms that produce drug resistance and even multidrug resistance. B-lactam is one of the most widely used antibiotics to treat infectious diseases. Resistance to β-lactam resistance...
Saved in:
Published in: | Microbiological research 2018-10, Vol.215, p.126-129 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The irrational use of antibiotics in agriculture and in the medical field has led to a variety of pathogenic microorganisms that produce drug resistance and even multidrug resistance. B-lactam is one of the most widely used antibiotics to treat infectious diseases. Resistance to β-lactam resistance can be primarily due to the presence β-lactamase, mutation of β-lactam targets and overexpression of efflux pumps. Two-component regulatory systems are composed of histidine kinase and response regulator that regulate gene expression under different environmental conditions. In this review, we summarized the mechanisms by which β-lactam resistance is developed and the role of the two-component regulatory system in β-lactam resistance. |
---|---|
ISSN: | 0944-5013 1618-0623 |
DOI: | 10.1016/j.micres.2018.07.005 |