Loading…

Nanometer-Resolved Mapping of Cell–Substrate Distances of Contracting Cardiomyocytes Using Surface Plasmon Resonance Microscopy

It has been shown that quantitative measurements of the cell–substrate distance of steady cells are possible with scanning surface plasmon resonance microscopy setups in combination with an angle resolved analysis. However, the accuracy of the determined cell–substrate distances as well as the capab...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-09, Vol.12 (9), p.8934-8942
Main Authors: Kreysing, Eva, Hassani, Hossein, Hampe, Nico, Offenhäusser, Andreas
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been shown that quantitative measurements of the cell–substrate distance of steady cells are possible with scanning surface plasmon resonance microscopy setups in combination with an angle resolved analysis. However, the accuracy of the determined cell–substrate distances as well as the capabilities for the investigation of cell dynamics remained limited due to the assumption of a homogeneous refractive index of the cytosol. Strong spatial or temporal deviations between the local refractive index and the average value can result in errors in the calculated cell–substrate distance of around 100 nm, while the average accuracy was determined to 37 nm. Here, we present a combination of acquisition and analysis techniques that enables the measurement of the cell–substrate distance of contractile cells as well as the study of intracellular processes through changes in the refractive index at the diffraction limit. By decoupling the measurement of the cell–substrate distance and the refractive index of the cytoplasm, we could increase the accuracy of the distance measurement on average by a factor of 25 reaching 1.5 nm under ideal conditions. We show a temporal and spatial mapping of changes in the refractive index and the cell–substrate distance which strongly correlate with the action potentials and reconstruct the three-dimensional profile of the basal cell membrane and its dynamics, while we reached an actual measurement accuracy of 2.3 nm.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.8b01396