Loading…
Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode
Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically co...
Saved in:
Published in: | ACS nano 2018-11, Vol.12 (11), p.10903-10913 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883 |
---|---|
cites | cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883 |
container_end_page | 10913 |
container_issue | 11 |
container_start_page | 10903 |
container_title | ACS nano |
container_volume | 12 |
creator | Kim, Donghyuk Park, Minkyu Kim, Sang-Min Shim, Hyung Cheoul Hyun, Seungmin Han, Seung Min |
description | Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability. |
doi_str_mv | 10.1021/acsnano.8b03951 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099893103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099893103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMovtfuJEtBOiaT9JGllvEB6oCjIG5KJr3RSJvUpFX892aY6s7VPYvvHO45CB1RMqFkSs-kClZaNymWhImUbqBdKliWkCJ73vzTKd1BeyG8E5LmRZ5tox1GaC64yHbRV-nsJ_hgnMUPIFW_Ek7j-5jaOe-GgF_sHGvn8aKXywbwrAHVe6feoDVKNrj8Vo2xryvThbE1-AZCwAuD74zyrpO-NyraStd2Lpge8Ll1NRygLS2bAIfj3UdPl7PH8jq5nV_dlOe3iWSM9QmFvGBMsVwq4JqKTNM6paRWmmlNOC24pHJKUglZLTQXPOc1ybhMCa8FLQq2j07WuZ13HwOEvmpNUNA00kIsV02JEIVglLCInq3R-HYIHnTVedNK_11RUq3Wrsa1q3Ht6Dgew4dlC_Uf_ztvBE7XQHRW727wNnb9N-4HDfaMTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099893103</pqid></control><display><type>article</type><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</creator><creatorcontrib>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</creatorcontrib><description>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03951</identifier><identifier>PMID: 30179496</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-11, Vol.12 (11), p.10903-10913</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</citedby><cites>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</cites><orcidid>0000-0001-9434-6405 ; 0000-0001-5275-8671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30179496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Park, Minkyu</creatorcontrib><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Shim, Hyung Cheoul</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMovtfuJEtBOiaT9JGllvEB6oCjIG5KJr3RSJvUpFX892aY6s7VPYvvHO45CB1RMqFkSs-kClZaNymWhImUbqBdKliWkCJ73vzTKd1BeyG8E5LmRZ5tox1GaC64yHbRV-nsJ_hgnMUPIFW_Ek7j-5jaOe-GgF_sHGvn8aKXywbwrAHVe6feoDVKNrj8Vo2xryvThbE1-AZCwAuD74zyrpO-NyraStd2Lpge8Ll1NRygLS2bAIfj3UdPl7PH8jq5nV_dlOe3iWSM9QmFvGBMsVwq4JqKTNM6paRWmmlNOC24pHJKUglZLTQXPOc1ybhMCa8FLQq2j07WuZ13HwOEvmpNUNA00kIsV02JEIVglLCInq3R-HYIHnTVedNK_11RUq3Wrsa1q3Ht6Dgew4dlC_Uf_ztvBE7XQHRW727wNnb9N-4HDfaMTQ</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Kim, Donghyuk</creator><creator>Park, Minkyu</creator><creator>Kim, Sang-Min</creator><creator>Shim, Hyung Cheoul</creator><creator>Hyun, Seungmin</creator><creator>Han, Seung Min</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid><orcidid>https://orcid.org/0000-0001-5275-8671</orcidid></search><sort><creationdate>20181127</creationdate><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><author>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Park, Minkyu</creatorcontrib><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Shim, Hyung Cheoul</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyuk</au><au>Park, Minkyu</au><au>Kim, Sang-Min</au><au>Shim, Hyung Cheoul</au><au>Hyun, Seungmin</au><au>Han, Seung Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-11-27</date><risdate>2018</risdate><volume>12</volume><issue>11</issue><spage>10903</spage><epage>10913</epage><pages>10903-10913</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30179496</pmid><doi>10.1021/acsnano.8b03951</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid><orcidid>https://orcid.org/0000-0001-5275-8671</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-11, Vol.12 (11), p.10903-10913 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2099893103 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20Reaction%20of%20Nanoporous%20ZnO%20for%20Stable%20Electrochemical%20Cycling%20of%20Binderless%20Si%20Microparticle%20Composite%20Anode&rft.jtitle=ACS%20nano&rft.au=Kim,%20Donghyuk&rft.date=2018-11-27&rft.volume=12&rft.issue=11&rft.spage=10903&rft.epage=10913&rft.pages=10903-10913&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03951&rft_dat=%3Cproquest_cross%3E2099893103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099893103&rft_id=info:pmid/30179496&rfr_iscdi=true |