Loading…

Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode

Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically co...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-11, Vol.12 (11), p.10903-10913
Main Authors: Kim, Donghyuk, Park, Minkyu, Kim, Sang-Min, Shim, Hyung Cheoul, Hyun, Seungmin, Han, Seung Min
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883
cites cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883
container_end_page 10913
container_issue 11
container_start_page 10903
container_title ACS nano
container_volume 12
creator Kim, Donghyuk
Park, Minkyu
Kim, Sang-Min
Shim, Hyung Cheoul
Hyun, Seungmin
Han, Seung Min
description Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.
doi_str_mv 10.1021/acsnano.8b03951
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099893103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099893103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMovtfuJEtBOiaT9JGllvEB6oCjIG5KJr3RSJvUpFX892aY6s7VPYvvHO45CB1RMqFkSs-kClZaNymWhImUbqBdKliWkCJ73vzTKd1BeyG8E5LmRZ5tox1GaC64yHbRV-nsJ_hgnMUPIFW_Ek7j-5jaOe-GgF_sHGvn8aKXywbwrAHVe6feoDVKNrj8Vo2xryvThbE1-AZCwAuD74zyrpO-NyraStd2Lpge8Ll1NRygLS2bAIfj3UdPl7PH8jq5nV_dlOe3iWSM9QmFvGBMsVwq4JqKTNM6paRWmmlNOC24pHJKUglZLTQXPOc1ybhMCa8FLQq2j07WuZ13HwOEvmpNUNA00kIsV02JEIVglLCInq3R-HYIHnTVedNK_11RUq3Wrsa1q3Ht6Dgew4dlC_Uf_ztvBE7XQHRW727wNnb9N-4HDfaMTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099893103</pqid></control><display><type>article</type><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</creator><creatorcontrib>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</creatorcontrib><description>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03951</identifier><identifier>PMID: 30179496</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-11, Vol.12 (11), p.10903-10913</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</citedby><cites>FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</cites><orcidid>0000-0001-9434-6405 ; 0000-0001-5275-8671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30179496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Park, Minkyu</creatorcontrib><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Shim, Hyung Cheoul</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMovtfuJEtBOiaT9JGllvEB6oCjIG5KJr3RSJvUpFX892aY6s7VPYvvHO45CB1RMqFkSs-kClZaNymWhImUbqBdKliWkCJ73vzTKd1BeyG8E5LmRZ5tox1GaC64yHbRV-nsJ_hgnMUPIFW_Ek7j-5jaOe-GgF_sHGvn8aKXywbwrAHVe6feoDVKNrj8Vo2xryvThbE1-AZCwAuD74zyrpO-NyraStd2Lpge8Ll1NRygLS2bAIfj3UdPl7PH8jq5nV_dlOe3iWSM9QmFvGBMsVwq4JqKTNM6paRWmmlNOC24pHJKUglZLTQXPOc1ybhMCa8FLQq2j07WuZ13HwOEvmpNUNA00kIsV02JEIVglLCInq3R-HYIHnTVedNK_11RUq3Wrsa1q3Ht6Dgew4dlC_Uf_ztvBE7XQHRW727wNnb9N-4HDfaMTQ</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Kim, Donghyuk</creator><creator>Park, Minkyu</creator><creator>Kim, Sang-Min</creator><creator>Shim, Hyung Cheoul</creator><creator>Hyun, Seungmin</creator><creator>Han, Seung Min</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid><orcidid>https://orcid.org/0000-0001-5275-8671</orcidid></search><sort><creationdate>20181127</creationdate><title>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</title><author>Kim, Donghyuk ; Park, Minkyu ; Kim, Sang-Min ; Shim, Hyung Cheoul ; Hyun, Seungmin ; Han, Seung Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Park, Minkyu</creatorcontrib><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Shim, Hyung Cheoul</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyuk</au><au>Park, Minkyu</au><au>Kim, Sang-Min</au><au>Shim, Hyung Cheoul</au><au>Hyun, Seungmin</au><au>Han, Seung Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-11-27</date><risdate>2018</risdate><volume>12</volume><issue>11</issue><spage>10903</spage><epage>10913</epage><pages>10903-10913</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Binderless, additiveless Si electrode design is developed where a nanoporous ZnO matrix is coated on a Si microparticle electrode to accommodate extreme Si volume expansion and facilitate stable electrochemical cycling. The conversion reaction of nanoporous ZnO forms an ionically and electrically conductive matrix of metallic Zn embedded in Li2O that surrounds the Si microparticles. Upon lithiation, the porous Li2O/Zn matrix expands with Si, preventing extensive pulverization, while Zn serves as active material to form Li x Zn to further enhance capacity. Electrodes with a Si mass loading of 1.5 mg/cm2 were fabricated, and a high initial capacity of ∼3900 mAh/g was achieved with an excellent reversible capacity of ∼1500 mAh/g (areal capacity ∼1.7 mAh/cm2) beyond 200 cycles. A high first-cycle Coulombic efficiency was obtained owing to the conversion reaction of nanoporous ZnO, which is a notable feature in comparison to conventional Si anodes. Ex situ analyses confirmed that the nanoporous ZnO coating maintained the coalescence of SiMPs throughout extended cycling. Therefore, the Li2O/Zn matrix derived from conversion-reacted nanoporous ZnO acted as an effective buffer to lithiation-induced stresses from volume expansion and served as a binder-like matrix that contributed to the overall electrode capacity and stability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30179496</pmid><doi>10.1021/acsnano.8b03951</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid><orcidid>https://orcid.org/0000-0001-5275-8671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-11, Vol.12 (11), p.10903-10913
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2099893103
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20Reaction%20of%20Nanoporous%20ZnO%20for%20Stable%20Electrochemical%20Cycling%20of%20Binderless%20Si%20Microparticle%20Composite%20Anode&rft.jtitle=ACS%20nano&rft.au=Kim,%20Donghyuk&rft.date=2018-11-27&rft.volume=12&rft.issue=11&rft.spage=10903&rft.epage=10913&rft.pages=10903-10913&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03951&rft_dat=%3Cproquest_cross%3E2099893103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-1e7833c37ace4f196f1d510dcf3ff04184a1a205ae6d9f49474d064a504d91883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099893103&rft_id=info:pmid/30179496&rfr_iscdi=true