Loading…
Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method
The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of t...
Saved in:
Published in: | Review of scientific instruments 2018-08, Vol.89 (8), p.084902-084902 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3 |
container_end_page | 084902 |
container_issue | 8 |
container_start_page | 084902 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Singhal, Dhruv Paterson, Jessy Tainoff, Dimitri Richard, Jacques Ben-Khedim, Meriam Gentile, Pascal Cagnon, Laurent Bourgault, Daniel Buttard, Denis Bourgeois, Olivier |
description | The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties. |
doi_str_mv | 10.1063/1.5025319 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100329780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086306125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCgRdAlrgAUoonTmL7WFVAkbbqBc6WE09YV4m92E6rPgJPxyvh7S574FBfRh5989vz_4S8AXYOrOOf4LxldctBPSMrYFJVoqv5c7JijDdVJxp5Sl6mdMvKaQFekFPOQDYCYEWGazRpiTijzzSM1HiXQo5h6waaNxhnM9EheLsM2d25_PDIUIs-IR1DxPQ45Y0P967c6JKc_7mbpPzPbzpj3gT7ipyMZkr4-lDPyI8vn79fXlXrm6_fLi_W1cBlnSsBAoXilveG21qhMlaozooRsWtt01ppxoaJHlktexysrKUaoWdKNtApRH5GPux1N2bS2-hmEx90ME5fXaz1rsdAFb8auIPCvt-z2xh-LWUNPbs04DQZj2FJuoZiXq2EZAV99x96G5boyya6ZrLjrINi_vHxIYaUIo7HHwDTu5Q06ENKhX17UFz6Ge2R_BdLAT7ugTS4bLIL_gm1v6BxmR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086306125</pqid></control><display><type>article</type><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</creator><creatorcontrib>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</creatorcontrib><description>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5025319</identifier><identifier>PMID: 30184711</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Aluminum oxide ; Anisotropy ; Complex systems ; Condensed Matter ; Conduction heating ; Conductive heat transfer ; Conductivity ; Forests ; Heat conductivity ; Measurement techniques ; Mesoscopic Systems and Quantum Hall Effect ; Multilayers ; Nanowires ; Physics ; Scientific apparatus & instruments ; Substrates ; Thermal conductivity ; Thermodynamic properties ; Thin films ; Two dimensional analysis ; Two dimensional models</subject><ispartof>Review of scientific instruments, 2018-08, Vol.89 (8), p.084902-084902</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</citedby><cites>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</cites><orcidid>0000-0002-1547-4247 ; 0000-0003-3362-5990 ; 0000-0003-2484-2934 ; 0000000215474247 ; 0000000324842934 ; 0000000333625990 ; 0000-0002-5023-9437 ; 0000-0002-0389-6493 ; 0000-0002-0465-7400 ; 0000-0003-0508-2191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5025319$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30184711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01910641$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Singhal, Dhruv</creatorcontrib><creatorcontrib>Paterson, Jessy</creatorcontrib><creatorcontrib>Tainoff, Dimitri</creatorcontrib><creatorcontrib>Richard, Jacques</creatorcontrib><creatorcontrib>Ben-Khedim, Meriam</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Bourgault, Daniel</creatorcontrib><creatorcontrib>Buttard, Denis</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</description><subject>Aluminum oxide</subject><subject>Anisotropy</subject><subject>Complex systems</subject><subject>Condensed Matter</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Conductivity</subject><subject>Forests</subject><subject>Heat conductivity</subject><subject>Measurement techniques</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Physics</subject><subject>Scientific apparatus & instruments</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thin films</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi1ERZfCgRdAlrgAUoonTmL7WFVAkbbqBc6WE09YV4m92E6rPgJPxyvh7S574FBfRh5989vz_4S8AXYOrOOf4LxldctBPSMrYFJVoqv5c7JijDdVJxp5Sl6mdMvKaQFekFPOQDYCYEWGazRpiTijzzSM1HiXQo5h6waaNxhnM9EheLsM2d25_PDIUIs-IR1DxPQ45Y0P967c6JKc_7mbpPzPbzpj3gT7ipyMZkr4-lDPyI8vn79fXlXrm6_fLi_W1cBlnSsBAoXilveG21qhMlaozooRsWtt01ppxoaJHlktexysrKUaoWdKNtApRH5GPux1N2bS2-hmEx90ME5fXaz1rsdAFb8auIPCvt-z2xh-LWUNPbs04DQZj2FJuoZiXq2EZAV99x96G5boyya6ZrLjrINi_vHxIYaUIo7HHwDTu5Q06ENKhX17UFz6Ge2R_BdLAT7ugTS4bLIL_gm1v6BxmR8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Singhal, Dhruv</creator><creator>Paterson, Jessy</creator><creator>Tainoff, Dimitri</creator><creator>Richard, Jacques</creator><creator>Ben-Khedim, Meriam</creator><creator>Gentile, Pascal</creator><creator>Cagnon, Laurent</creator><creator>Bourgault, Daniel</creator><creator>Buttard, Denis</creator><creator>Bourgeois, Olivier</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0003-3362-5990</orcidid><orcidid>https://orcid.org/0000-0003-2484-2934</orcidid><orcidid>https://orcid.org/0000000215474247</orcidid><orcidid>https://orcid.org/0000000324842934</orcidid><orcidid>https://orcid.org/0000000333625990</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0002-0389-6493</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-0508-2191</orcidid></search><sort><creationdate>20180801</creationdate><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><author>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>Anisotropy</topic><topic>Complex systems</topic><topic>Condensed Matter</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Conductivity</topic><topic>Forests</topic><topic>Heat conductivity</topic><topic>Measurement techniques</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Physics</topic><topic>Scientific apparatus & instruments</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thin films</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singhal, Dhruv</creatorcontrib><creatorcontrib>Paterson, Jessy</creatorcontrib><creatorcontrib>Tainoff, Dimitri</creatorcontrib><creatorcontrib>Richard, Jacques</creatorcontrib><creatorcontrib>Ben-Khedim, Meriam</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Bourgault, Daniel</creatorcontrib><creatorcontrib>Buttard, Denis</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singhal, Dhruv</au><au>Paterson, Jessy</au><au>Tainoff, Dimitri</au><au>Richard, Jacques</au><au>Ben-Khedim, Meriam</au><au>Gentile, Pascal</au><au>Cagnon, Laurent</au><au>Bourgault, Daniel</au><au>Buttard, Denis</au><au>Bourgeois, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>89</volume><issue>8</issue><spage>084902</spage><epage>084902</epage><pages>084902-084902</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30184711</pmid><doi>10.1063/1.5025319</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0003-3362-5990</orcidid><orcidid>https://orcid.org/0000-0003-2484-2934</orcidid><orcidid>https://orcid.org/0000000215474247</orcidid><orcidid>https://orcid.org/0000000324842934</orcidid><orcidid>https://orcid.org/0000000333625990</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0002-0389-6493</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-0508-2191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-08, Vol.89 (8), p.084902-084902 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_miscellaneous_2100329780 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Aluminum oxide Anisotropy Complex systems Condensed Matter Conduction heating Conductive heat transfer Conductivity Forests Heat conductivity Measurement techniques Mesoscopic Systems and Quantum Hall Effect Multilayers Nanowires Physics Scientific apparatus & instruments Substrates Thermal conductivity Thermodynamic properties Thin films Two dimensional analysis Two dimensional models |
title | Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20anisotropic%20thermal%20conductivity%20of%20a%20dense%20forest%20of%20nanowires%20using%20the%203%CF%89%20method&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Singhal,%20Dhruv&rft.date=2018-08-01&rft.volume=89&rft.issue=8&rft.spage=084902&rft.epage=084902&rft.pages=084902-084902&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5025319&rft_dat=%3Cproquest_cross%3E2086306125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086306125&rft_id=info:pmid/30184711&rfr_iscdi=true |