Loading…

Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method

The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of t...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2018-08, Vol.89 (8), p.084902-084902
Main Authors: Singhal, Dhruv, Paterson, Jessy, Tainoff, Dimitri, Richard, Jacques, Ben-Khedim, Meriam, Gentile, Pascal, Cagnon, Laurent, Bourgault, Daniel, Buttard, Denis, Bourgeois, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3
cites cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3
container_end_page 084902
container_issue 8
container_start_page 084902
container_title Review of scientific instruments
container_volume 89
creator Singhal, Dhruv
Paterson, Jessy
Tainoff, Dimitri
Richard, Jacques
Ben-Khedim, Meriam
Gentile, Pascal
Cagnon, Laurent
Bourgault, Daniel
Buttard, Denis
Bourgeois, Olivier
description The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.
doi_str_mv 10.1063/1.5025319
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100329780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086306125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCgRdAlrgAUoonTmL7WFVAkbbqBc6WE09YV4m92E6rPgJPxyvh7S574FBfRh5989vz_4S8AXYOrOOf4LxldctBPSMrYFJVoqv5c7JijDdVJxp5Sl6mdMvKaQFekFPOQDYCYEWGazRpiTijzzSM1HiXQo5h6waaNxhnM9EheLsM2d25_PDIUIs-IR1DxPQ45Y0P967c6JKc_7mbpPzPbzpj3gT7ipyMZkr4-lDPyI8vn79fXlXrm6_fLi_W1cBlnSsBAoXilveG21qhMlaozooRsWtt01ppxoaJHlktexysrKUaoWdKNtApRH5GPux1N2bS2-hmEx90ME5fXaz1rsdAFb8auIPCvt-z2xh-LWUNPbs04DQZj2FJuoZiXq2EZAV99x96G5boyya6ZrLjrINi_vHxIYaUIo7HHwDTu5Q06ENKhX17UFz6Ge2R_BdLAT7ugTS4bLIL_gm1v6BxmR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086306125</pqid></control><display><type>article</type><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</creator><creatorcontrib>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</creatorcontrib><description>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5025319</identifier><identifier>PMID: 30184711</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Aluminum oxide ; Anisotropy ; Complex systems ; Condensed Matter ; Conduction heating ; Conductive heat transfer ; Conductivity ; Forests ; Heat conductivity ; Measurement techniques ; Mesoscopic Systems and Quantum Hall Effect ; Multilayers ; Nanowires ; Physics ; Scientific apparatus &amp; instruments ; Substrates ; Thermal conductivity ; Thermodynamic properties ; Thin films ; Two dimensional analysis ; Two dimensional models</subject><ispartof>Review of scientific instruments, 2018-08, Vol.89 (8), p.084902-084902</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</citedby><cites>FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</cites><orcidid>0000-0002-1547-4247 ; 0000-0003-3362-5990 ; 0000-0003-2484-2934 ; 0000000215474247 ; 0000000324842934 ; 0000000333625990 ; 0000-0002-5023-9437 ; 0000-0002-0389-6493 ; 0000-0002-0465-7400 ; 0000-0003-0508-2191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5025319$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30184711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01910641$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Singhal, Dhruv</creatorcontrib><creatorcontrib>Paterson, Jessy</creatorcontrib><creatorcontrib>Tainoff, Dimitri</creatorcontrib><creatorcontrib>Richard, Jacques</creatorcontrib><creatorcontrib>Ben-Khedim, Meriam</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Bourgault, Daniel</creatorcontrib><creatorcontrib>Buttard, Denis</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</description><subject>Aluminum oxide</subject><subject>Anisotropy</subject><subject>Complex systems</subject><subject>Condensed Matter</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Conductivity</subject><subject>Forests</subject><subject>Heat conductivity</subject><subject>Measurement techniques</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Physics</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thin films</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi1ERZfCgRdAlrgAUoonTmL7WFVAkbbqBc6WE09YV4m92E6rPgJPxyvh7S574FBfRh5989vz_4S8AXYOrOOf4LxldctBPSMrYFJVoqv5c7JijDdVJxp5Sl6mdMvKaQFekFPOQDYCYEWGazRpiTijzzSM1HiXQo5h6waaNxhnM9EheLsM2d25_PDIUIs-IR1DxPQ45Y0P967c6JKc_7mbpPzPbzpj3gT7ipyMZkr4-lDPyI8vn79fXlXrm6_fLi_W1cBlnSsBAoXilveG21qhMlaozooRsWtt01ppxoaJHlktexysrKUaoWdKNtApRH5GPux1N2bS2-hmEx90ME5fXaz1rsdAFb8auIPCvt-z2xh-LWUNPbs04DQZj2FJuoZiXq2EZAV99x96G5boyya6ZrLjrINi_vHxIYaUIo7HHwDTu5Q06ENKhX17UFz6Ge2R_BdLAT7ugTS4bLIL_gm1v6BxmR8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Singhal, Dhruv</creator><creator>Paterson, Jessy</creator><creator>Tainoff, Dimitri</creator><creator>Richard, Jacques</creator><creator>Ben-Khedim, Meriam</creator><creator>Gentile, Pascal</creator><creator>Cagnon, Laurent</creator><creator>Bourgault, Daniel</creator><creator>Buttard, Denis</creator><creator>Bourgeois, Olivier</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0003-3362-5990</orcidid><orcidid>https://orcid.org/0000-0003-2484-2934</orcidid><orcidid>https://orcid.org/0000000215474247</orcidid><orcidid>https://orcid.org/0000000324842934</orcidid><orcidid>https://orcid.org/0000000333625990</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0002-0389-6493</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-0508-2191</orcidid></search><sort><creationdate>20180801</creationdate><title>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</title><author>Singhal, Dhruv ; Paterson, Jessy ; Tainoff, Dimitri ; Richard, Jacques ; Ben-Khedim, Meriam ; Gentile, Pascal ; Cagnon, Laurent ; Bourgault, Daniel ; Buttard, Denis ; Bourgeois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>Anisotropy</topic><topic>Complex systems</topic><topic>Condensed Matter</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Conductivity</topic><topic>Forests</topic><topic>Heat conductivity</topic><topic>Measurement techniques</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Physics</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thin films</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singhal, Dhruv</creatorcontrib><creatorcontrib>Paterson, Jessy</creatorcontrib><creatorcontrib>Tainoff, Dimitri</creatorcontrib><creatorcontrib>Richard, Jacques</creatorcontrib><creatorcontrib>Ben-Khedim, Meriam</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Bourgault, Daniel</creatorcontrib><creatorcontrib>Buttard, Denis</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singhal, Dhruv</au><au>Paterson, Jessy</au><au>Tainoff, Dimitri</au><au>Richard, Jacques</au><au>Ben-Khedim, Meriam</au><au>Gentile, Pascal</au><au>Cagnon, Laurent</au><au>Bourgault, Daniel</au><au>Buttard, Denis</au><au>Bourgeois, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>89</volume><issue>8</issue><spage>084902</spage><epage>084902</epage><pages>084902-084902</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The 3ω method is a dynamic measurement technique developed for determining the thermal conductivity of thin films or semi-infinite bulk materials. A simplified model is often applied to deduce the thermal conductivity from the slope of the real part of the ac temperature amplitude as a function of the logarithm of frequency, which in-turn brings a limitation on the kind of samples under observation. In this work, we have measured the thermal conductivity of a forest of nanowires embedded in nanoporous alumina membranes using the 3ω method. An analytical solution of 2D heat conduction is then used to model the multilayer system, considering the anisotropic thermal properties of the different layers, substrate thermal conductivity, and their thicknesses. Data treatment is performed by fitting the experimental results with the 2D model on two different sets of nanowires (silicon and BiSbTe) embedded in the matrix of nanoporous alumina templates, having thermal conductivities that differ by at least one order of magnitude. These experimental results show that this method extends the applicability of the 3ω technique to more complex systems having anisotropic thermal properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30184711</pmid><doi>10.1063/1.5025319</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0003-3362-5990</orcidid><orcidid>https://orcid.org/0000-0003-2484-2934</orcidid><orcidid>https://orcid.org/0000000215474247</orcidid><orcidid>https://orcid.org/0000000324842934</orcidid><orcidid>https://orcid.org/0000000333625990</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0002-0389-6493</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-0508-2191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-08, Vol.89 (8), p.084902-084902
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_2100329780
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Aluminum oxide
Anisotropy
Complex systems
Condensed Matter
Conduction heating
Conductive heat transfer
Conductivity
Forests
Heat conductivity
Measurement techniques
Mesoscopic Systems and Quantum Hall Effect
Multilayers
Nanowires
Physics
Scientific apparatus & instruments
Substrates
Thermal conductivity
Thermodynamic properties
Thin films
Two dimensional analysis
Two dimensional models
title Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3ω method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20anisotropic%20thermal%20conductivity%20of%20a%20dense%20forest%20of%20nanowires%20using%20the%203%CF%89%20method&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Singhal,%20Dhruv&rft.date=2018-08-01&rft.volume=89&rft.issue=8&rft.spage=084902&rft.epage=084902&rft.pages=084902-084902&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5025319&rft_dat=%3Cproquest_cross%3E2086306125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-717e793d3ba3d29e9ad796d7fee65d45d8af407be028becd8289f1b0984169ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086306125&rft_id=info:pmid/30184711&rfr_iscdi=true