Loading…

Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands

Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-10, Vol.10 (39), p.33640-33651
Main Authors: Lawrence, Randy L, Hughes, Zak E, Cendan, Vincent J, Liu, Yang, Lim, Chang-Keun, Prasad, Paras N, Swihart, Mark T, Walsh, Tiffany R, Knecht, Marc R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973
cites cdi_FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973
container_end_page 33651
container_issue 39
container_start_page 33640
container_title ACS applied materials & interfaces
container_volume 10
creator Lawrence, Randy L
Hughes, Zak E
Cendan, Vincent J
Liu, Yang
Lim, Chang-Keun
Prasad, Paras N
Swihart, Mark T
Walsh, Tiffany R
Knecht, Marc R
description Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively, however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.
doi_str_mv 10.1021/acsami.8b10582
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100330933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100330933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EolC4ckQ-IqQUP_JwjqgCWqmiPcA5chy7dZXYqZ0I5d_jKqU3Tjvanf2kGQAeMJphRPALF543esZKjBJGLsANzuM4YiQhl2cdxxNw6_0eoZQSlFyDCUWYJYjQG3BYt50WvIZzazpna2gV_OTGttyFfS3hnHe8Hrz2cGlU3UsjZAXLAW52trP-R3diBzfW605bo80WagMXQ-l0BTcyoKsjoW2Pl5XeclP5O3CleO3l_WlOwff729d8Ea3WH8v56yriNENdFOcVloyLlAmSl4rhEDANGTOcsyBkUIkqUxUnmaAkZTKVKpUxUYIjTvOMTsHTyG2dPfTSd0WjvZB1zY20vS8IRohSlFMarLPRKpz13klVtE433A0FRsWx5mKsuTjVHB4eT-y-bGR1tv_1GgzPoyE8FnvbOxOi_kf7BejCiEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100330933</pqid></control><display><type>article</type><title>Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lawrence, Randy L ; Hughes, Zak E ; Cendan, Vincent J ; Liu, Yang ; Lim, Chang-Keun ; Prasad, Paras N ; Swihart, Mark T ; Walsh, Tiffany R ; Knecht, Marc R</creator><creatorcontrib>Lawrence, Randy L ; Hughes, Zak E ; Cendan, Vincent J ; Liu, Yang ; Lim, Chang-Keun ; Prasad, Paras N ; Swihart, Mark T ; Walsh, Tiffany R ; Knecht, Marc R</creatorcontrib><description>Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively, however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b10582</identifier><identifier>PMID: 30185023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Electron, Transmission ; Peptides - chemistry ; Surface Properties</subject><ispartof>ACS applied materials &amp; interfaces, 2018-10, Vol.10 (39), p.33640-33651</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973</citedby><cites>FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973</cites><orcidid>0000-0002-7614-7258 ; 0000-0003-2166-9822 ; 0000-0001-5586-623X ; 0000-0003-1306-5770 ; 0000-0002-0233-9484 ; 0000-0002-0905-7084 ; 0000-0002-9652-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30185023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawrence, Randy L</creatorcontrib><creatorcontrib>Hughes, Zak E</creatorcontrib><creatorcontrib>Cendan, Vincent J</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lim, Chang-Keun</creatorcontrib><creatorcontrib>Prasad, Paras N</creatorcontrib><creatorcontrib>Swihart, Mark T</creatorcontrib><creatorcontrib>Walsh, Tiffany R</creatorcontrib><creatorcontrib>Knecht, Marc R</creatorcontrib><title>Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively, however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.</description><subject>Catalysis</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Electron, Transmission</subject><subject>Peptides - chemistry</subject><subject>Surface Properties</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EolC4ckQ-IqQUP_JwjqgCWqmiPcA5chy7dZXYqZ0I5d_jKqU3Tjvanf2kGQAeMJphRPALF543esZKjBJGLsANzuM4YiQhl2cdxxNw6_0eoZQSlFyDCUWYJYjQG3BYt50WvIZzazpna2gV_OTGttyFfS3hnHe8Hrz2cGlU3UsjZAXLAW52trP-R3diBzfW605bo80WagMXQ-l0BTcyoKsjoW2Pl5XeclP5O3CleO3l_WlOwff729d8Ea3WH8v56yriNENdFOcVloyLlAmSl4rhEDANGTOcsyBkUIkqUxUnmaAkZTKVKpUxUYIjTvOMTsHTyG2dPfTSd0WjvZB1zY20vS8IRohSlFMarLPRKpz13klVtE433A0FRsWx5mKsuTjVHB4eT-y-bGR1tv_1GgzPoyE8FnvbOxOi_kf7BejCiEw</recordid><startdate>20181003</startdate><enddate>20181003</enddate><creator>Lawrence, Randy L</creator><creator>Hughes, Zak E</creator><creator>Cendan, Vincent J</creator><creator>Liu, Yang</creator><creator>Lim, Chang-Keun</creator><creator>Prasad, Paras N</creator><creator>Swihart, Mark T</creator><creator>Walsh, Tiffany R</creator><creator>Knecht, Marc R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7614-7258</orcidid><orcidid>https://orcid.org/0000-0003-2166-9822</orcidid><orcidid>https://orcid.org/0000-0001-5586-623X</orcidid><orcidid>https://orcid.org/0000-0003-1306-5770</orcidid><orcidid>https://orcid.org/0000-0002-0233-9484</orcidid><orcidid>https://orcid.org/0000-0002-0905-7084</orcidid><orcidid>https://orcid.org/0000-0002-9652-687X</orcidid></search><sort><creationdate>20181003</creationdate><title>Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands</title><author>Lawrence, Randy L ; Hughes, Zak E ; Cendan, Vincent J ; Liu, Yang ; Lim, Chang-Keun ; Prasad, Paras N ; Swihart, Mark T ; Walsh, Tiffany R ; Knecht, Marc R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Electron, Transmission</topic><topic>Peptides - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, Randy L</creatorcontrib><creatorcontrib>Hughes, Zak E</creatorcontrib><creatorcontrib>Cendan, Vincent J</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lim, Chang-Keun</creatorcontrib><creatorcontrib>Prasad, Paras N</creatorcontrib><creatorcontrib>Swihart, Mark T</creatorcontrib><creatorcontrib>Walsh, Tiffany R</creatorcontrib><creatorcontrib>Knecht, Marc R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrence, Randy L</au><au>Hughes, Zak E</au><au>Cendan, Vincent J</au><au>Liu, Yang</au><au>Lim, Chang-Keun</au><au>Prasad, Paras N</au><au>Swihart, Mark T</au><au>Walsh, Tiffany R</au><au>Knecht, Marc R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-10-03</date><risdate>2018</risdate><volume>10</volume><issue>39</issue><spage>33640</spage><epage>33651</epage><pages>33640-33651</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively, however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30185023</pmid><doi>10.1021/acsami.8b10582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7614-7258</orcidid><orcidid>https://orcid.org/0000-0003-2166-9822</orcidid><orcidid>https://orcid.org/0000-0001-5586-623X</orcidid><orcidid>https://orcid.org/0000-0003-1306-5770</orcidid><orcidid>https://orcid.org/0000-0002-0233-9484</orcidid><orcidid>https://orcid.org/0000-0002-0905-7084</orcidid><orcidid>https://orcid.org/0000-0002-9652-687X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-10, Vol.10 (39), p.33640-33651
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2100330933
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
Gold - chemistry
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microscopy, Electron, Transmission
Peptides - chemistry
Surface Properties
title Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Control%20of%20Nanoparticle%20Catalysis%20Influenced%20by%20Photoswitch%20Positioning%20in%20Hybrid%20Peptide%20Capping%20Ligands&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lawrence,%20Randy%20L&rft.date=2018-10-03&rft.volume=10&rft.issue=39&rft.spage=33640&rft.epage=33651&rft.pages=33640-33651&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b10582&rft_dat=%3Cproquest_cross%3E2100330933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-49d1e8ac68c29bf8110560587198560e5875fb6f457c3268e6ef6e42fca0a3973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100330933&rft_id=info:pmid/30185023&rfr_iscdi=true