Loading…

Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework

We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2007-11, Vol.29 (6), p.591-613
Main Authors: LENTON, T. M, MARSH, R, HARGREAVES, J. C, HARRIS, P. P, JIAO, Z, LIVINA, V. N, PAYNE, A. J, RUTT, I. C, SHEPHERD, J. G, VALDES, P. J, WILLIAMS, G, WILLIAMSON, M. S, PRICE, A. R, YOOL, A, LUNT, D. J, AKSENOV, Y, ANNAN, J. D, COOPER-CHADWICK, T, COX, S. J, EDWARDS, N. R, GOSWAMI, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63
cites cdi_FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63
container_end_page 613
container_issue 6
container_start_page 591
container_title Climate dynamics
container_volume 29
creator LENTON, T. M
MARSH, R
HARGREAVES, J. C
HARRIS, P. P
JIAO, Z
LIVINA, V. N
PAYNE, A. J
RUTT, I. C
SHEPHERD, J. G
VALDES, P. J
WILLIAMS, G
WILLIAMSON, M. S
PRICE, A. R
YOOL, A
LUNT, D. J
AKSENOV, Y
ANNAN, J. D
COOPER-CHADWICK, T
COX, S. J
EDWARDS, N. R
GOSWAMI, S
description We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude-latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00382-007-0254-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21016557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21016557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63</originalsourceid><addsrcrecordid>eNpdkcGKFDEQhhtRcFx9AG9BUNxDa9LpJN1HWdrZgWW96LmpSSo7WbuTMUmzzpv5eKZ3FgQhRX6K7_8pqqrqLaOfGKXqc6KUd01dZE0b0db9s2rDWl46Xd8-rza057RWQomX1auU7illrVTNpvozWIs6JxIsgTyHdDxgdJqYk4fZ6UTAGxI0gicRU5iW7IIn5e1dnTLs3eTyaTXnA64V53CAyXkk2kW9TPDI4-8S5tGQJTl_98huozNkuIX9VNo7n_EuQi5ygJgPJJ1SxpnMweA0rZaP2-F2N1wSG2HGhxB_vq5eWJgSvnn6L6ofX4fvV9f1zbft7urLTa25krmWivesNbpVQGUjJQVuGGutUQotGCM5BUq1lbYXXLWSW6oBO8FQcN2g5BfVh3PuMYZfC6Y8zi7pMhV4DEsaG0aZFEIV8N1_4H1Yoi-zjUrJrivrFgViZ0jHkFJEOx6jmyGeRkbH9ZDj-ZDjKtdDjn3xvH8KhqRhKhvw2qV_xp5R2XHB_wIOyqCz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>776886725</pqid></control><display><type>article</type><title>Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework</title><source>Springer Link</source><creator>LENTON, T. M ; MARSH, R ; HARGREAVES, J. C ; HARRIS, P. P ; JIAO, Z ; LIVINA, V. N ; PAYNE, A. J ; RUTT, I. C ; SHEPHERD, J. G ; VALDES, P. J ; WILLIAMS, G ; WILLIAMSON, M. S ; PRICE, A. R ; YOOL, A ; LUNT, D. J ; AKSENOV, Y ; ANNAN, J. D ; COOPER-CHADWICK, T ; COX, S. J ; EDWARDS, N. R ; GOSWAMI, S</creator><creatorcontrib>LENTON, T. M ; MARSH, R ; HARGREAVES, J. C ; HARRIS, P. P ; JIAO, Z ; LIVINA, V. N ; PAYNE, A. J ; RUTT, I. C ; SHEPHERD, J. G ; VALDES, P. J ; WILLIAMS, G ; WILLIAMSON, M. S ; PRICE, A. R ; YOOL, A ; LUNT, D. J ; AKSENOV, Y ; ANNAN, J. D ; COOPER-CHADWICK, T ; COX, S. J ; EDWARDS, N. R ; GOSWAMI, S</creatorcontrib><description>We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude-latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-007-0254-9</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Atmosphere ; Climatology. Bioclimatology. Climate change ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fresh water ; Longitude ; Meteorology ; Ocean currents ; Physics of the oceans ; Sea-air exchange processes ; Thermohaline circulation ; Thermohaline structure and circulation. Turbulence and diffusion</subject><ispartof>Climate dynamics, 2007-11, Vol.29 (6), p.591-613</ispartof><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63</citedby><cites>FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19106835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LENTON, T. M</creatorcontrib><creatorcontrib>MARSH, R</creatorcontrib><creatorcontrib>HARGREAVES, J. C</creatorcontrib><creatorcontrib>HARRIS, P. P</creatorcontrib><creatorcontrib>JIAO, Z</creatorcontrib><creatorcontrib>LIVINA, V. N</creatorcontrib><creatorcontrib>PAYNE, A. J</creatorcontrib><creatorcontrib>RUTT, I. C</creatorcontrib><creatorcontrib>SHEPHERD, J. G</creatorcontrib><creatorcontrib>VALDES, P. J</creatorcontrib><creatorcontrib>WILLIAMS, G</creatorcontrib><creatorcontrib>WILLIAMSON, M. S</creatorcontrib><creatorcontrib>PRICE, A. R</creatorcontrib><creatorcontrib>YOOL, A</creatorcontrib><creatorcontrib>LUNT, D. J</creatorcontrib><creatorcontrib>AKSENOV, Y</creatorcontrib><creatorcontrib>ANNAN, J. D</creatorcontrib><creatorcontrib>COOPER-CHADWICK, T</creatorcontrib><creatorcontrib>COX, S. J</creatorcontrib><creatorcontrib>EDWARDS, N. R</creatorcontrib><creatorcontrib>GOSWAMI, S</creatorcontrib><title>Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework</title><title>Climate dynamics</title><description>We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude-latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model.[PUBLICATION ABSTRACT]</description><subject>Atmosphere</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fresh water</subject><subject>Longitude</subject><subject>Meteorology</subject><subject>Ocean currents</subject><subject>Physics of the oceans</subject><subject>Sea-air exchange processes</subject><subject>Thermohaline circulation</subject><subject>Thermohaline structure and circulation. Turbulence and diffusion</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkcGKFDEQhhtRcFx9AG9BUNxDa9LpJN1HWdrZgWW96LmpSSo7WbuTMUmzzpv5eKZ3FgQhRX6K7_8pqqrqLaOfGKXqc6KUd01dZE0b0db9s2rDWl46Xd8-rza057RWQomX1auU7illrVTNpvozWIs6JxIsgTyHdDxgdJqYk4fZ6UTAGxI0gicRU5iW7IIn5e1dnTLs3eTyaTXnA64V53CAyXkk2kW9TPDI4-8S5tGQJTl_98huozNkuIX9VNo7n_EuQi5ygJgPJJ1SxpnMweA0rZaP2-F2N1wSG2HGhxB_vq5eWJgSvnn6L6ofX4fvV9f1zbft7urLTa25krmWivesNbpVQGUjJQVuGGutUQotGCM5BUq1lbYXXLWSW6oBO8FQcN2g5BfVh3PuMYZfC6Y8zi7pMhV4DEsaG0aZFEIV8N1_4H1Yoi-zjUrJrivrFgViZ0jHkFJEOx6jmyGeRkbH9ZDj-ZDjKtdDjn3xvH8KhqRhKhvw2qV_xp5R2XHB_wIOyqCz</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>LENTON, T. M</creator><creator>MARSH, R</creator><creator>HARGREAVES, J. C</creator><creator>HARRIS, P. P</creator><creator>JIAO, Z</creator><creator>LIVINA, V. N</creator><creator>PAYNE, A. J</creator><creator>RUTT, I. C</creator><creator>SHEPHERD, J. G</creator><creator>VALDES, P. J</creator><creator>WILLIAMS, G</creator><creator>WILLIAMSON, M. S</creator><creator>PRICE, A. R</creator><creator>YOOL, A</creator><creator>LUNT, D. J</creator><creator>AKSENOV, Y</creator><creator>ANNAN, J. D</creator><creator>COOPER-CHADWICK, T</creator><creator>COX, S. J</creator><creator>EDWARDS, N. R</creator><creator>GOSWAMI, S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20071101</creationdate><title>Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework</title><author>LENTON, T. M ; MARSH, R ; HARGREAVES, J. C ; HARRIS, P. P ; JIAO, Z ; LIVINA, V. N ; PAYNE, A. J ; RUTT, I. C ; SHEPHERD, J. G ; VALDES, P. J ; WILLIAMS, G ; WILLIAMSON, M. S ; PRICE, A. R ; YOOL, A ; LUNT, D. J ; AKSENOV, Y ; ANNAN, J. D ; COOPER-CHADWICK, T ; COX, S. J ; EDWARDS, N. R ; GOSWAMI, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atmosphere</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fresh water</topic><topic>Longitude</topic><topic>Meteorology</topic><topic>Ocean currents</topic><topic>Physics of the oceans</topic><topic>Sea-air exchange processes</topic><topic>Thermohaline circulation</topic><topic>Thermohaline structure and circulation. Turbulence and diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LENTON, T. M</creatorcontrib><creatorcontrib>MARSH, R</creatorcontrib><creatorcontrib>HARGREAVES, J. C</creatorcontrib><creatorcontrib>HARRIS, P. P</creatorcontrib><creatorcontrib>JIAO, Z</creatorcontrib><creatorcontrib>LIVINA, V. N</creatorcontrib><creatorcontrib>PAYNE, A. J</creatorcontrib><creatorcontrib>RUTT, I. C</creatorcontrib><creatorcontrib>SHEPHERD, J. G</creatorcontrib><creatorcontrib>VALDES, P. J</creatorcontrib><creatorcontrib>WILLIAMS, G</creatorcontrib><creatorcontrib>WILLIAMSON, M. S</creatorcontrib><creatorcontrib>PRICE, A. R</creatorcontrib><creatorcontrib>YOOL, A</creatorcontrib><creatorcontrib>LUNT, D. J</creatorcontrib><creatorcontrib>AKSENOV, Y</creatorcontrib><creatorcontrib>ANNAN, J. D</creatorcontrib><creatorcontrib>COOPER-CHADWICK, T</creatorcontrib><creatorcontrib>COX, S. J</creatorcontrib><creatorcontrib>EDWARDS, N. R</creatorcontrib><creatorcontrib>GOSWAMI, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LENTON, T. M</au><au>MARSH, R</au><au>HARGREAVES, J. C</au><au>HARRIS, P. P</au><au>JIAO, Z</au><au>LIVINA, V. N</au><au>PAYNE, A. J</au><au>RUTT, I. C</au><au>SHEPHERD, J. G</au><au>VALDES, P. J</au><au>WILLIAMS, G</au><au>WILLIAMSON, M. S</au><au>PRICE, A. R</au><au>YOOL, A</au><au>LUNT, D. J</au><au>AKSENOV, Y</au><au>ANNAN, J. D</au><au>COOPER-CHADWICK, T</au><au>COX, S. J</au><au>EDWARDS, N. R</au><au>GOSWAMI, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework</atitle><jtitle>Climate dynamics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>29</volume><issue>6</issue><spage>591</spage><epage>613</epage><pages>591-613</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude-latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00382-007-0254-9</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2007-11, Vol.29 (6), p.591-613
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_21016557
source Springer Link
subjects Atmosphere
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Exact sciences and technology
External geophysics
Fresh water
Longitude
Meteorology
Ocean currents
Physics of the oceans
Sea-air exchange processes
Thermohaline circulation
Thermohaline structure and circulation. Turbulence and diffusion
title Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20atmospheric%20dynamics%20and%20ocean%20resolution%20on%20bi-stability%20of%20the%20thermohaline%20circulation%20examined%20using%20the%20Grid%20ENabled%20Integrated%20Earth%20system%20modelling%20(GENIE)%20framework&rft.jtitle=Climate%20dynamics&rft.au=LENTON,%20T.%20M&rft.date=2007-11-01&rft.volume=29&rft.issue=6&rft.spage=591&rft.epage=613&rft.pages=591-613&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-007-0254-9&rft_dat=%3Cproquest_cross%3E21016557%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-673914dc47a062660a3d114fd77efadd630a00cf6f9537463f0cae851e53c2e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=776886725&rft_id=info:pmid/&rfr_iscdi=true