Loading…

Wave hindcasting by coupling numerical model and artificial neural networks

By coupling numerical wave model (NWM) and artificial neural networks (ANNs), a new procedure for wave prediction is proposed. In many situations, numerical wave modeling is not justified due to economical consideration. Although incorporation of an ANN model is inexpensive, such a model needs a lon...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2008-03, Vol.35 (3), p.417-425
Main Authors: Malekmohamadi, I., Ghiassi, R., Yazdanpanah, M.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By coupling numerical wave model (NWM) and artificial neural networks (ANNs), a new procedure for wave prediction is proposed. In many situations, numerical wave modeling is not justified due to economical consideration. Although incorporation of an ANN model is inexpensive, such a model needs a long time period of wave data for training, which is generally inconvenient to achieve. A proper combination of these two methods could carry the potentials of both. Based on the proposed approach, wave data are generated by a NWM by means of a short period of assumed winds at a concerned point. Then, an ANN is designed and trained using the above-mentioned generated wind-wave data. This ANN model is capable of mapping wind-velocity time series to wave height and period time series with low cost and acceptable accuracy. The method was applied for wave hindcasting to two different sites; Lake Superior and the Pacific Ocean. Simulation results show the superiority of the proposed approach.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2007.09.003