Loading…
Wave hindcasting by coupling numerical model and artificial neural networks
By coupling numerical wave model (NWM) and artificial neural networks (ANNs), a new procedure for wave prediction is proposed. In many situations, numerical wave modeling is not justified due to economical consideration. Although incorporation of an ANN model is inexpensive, such a model needs a lon...
Saved in:
Published in: | Ocean engineering 2008-03, Vol.35 (3), p.417-425 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By coupling numerical wave model (NWM) and artificial neural networks (ANNs), a new procedure for wave prediction is proposed. In many situations, numerical wave modeling is not justified due to economical consideration. Although incorporation of an ANN model is inexpensive, such a model needs a long time period of wave data for training, which is generally inconvenient to achieve. A proper combination of these two methods could carry the potentials of both. Based on the proposed approach, wave data are generated by a NWM by means of a short period of assumed winds at a concerned point. Then, an ANN is designed and trained using the above-mentioned generated wind-wave data. This ANN model is capable of mapping wind-velocity time series to wave height and period time series with low cost and acceptable accuracy. The method was applied for wave hindcasting to two different sites; Lake Superior and the Pacific Ocean. Simulation results show the superiority of the proposed approach. |
---|---|
ISSN: | 0029-8018 1873-5258 |
DOI: | 10.1016/j.oceaneng.2007.09.003 |