Loading…

Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China

Volatile organic compounds (VOCs) are a kind of important precursors for ozone photochemical formation. In this study, VOCs were measured from November 5th, 2013 to January 6th, 2014 at the Second Jinshan Industrial Area, Shanghai, China. The results showed that the measured VOCs were dominated by a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) 2018-09, Vol.71, p.233-248
Main Authors: Zhang, Yunchen, Li, Rui, Fu, Hongbo, Zhou, Dong, Chen, Jianmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Volatile organic compounds (VOCs) are a kind of important precursors for ozone photochemical formation. In this study, VOCs were measured from November 5th, 2013 to January 6th, 2014 at the Second Jinshan Industrial Area, Shanghai, China. The results showed that the measured VOCs were dominated by alkanes (41.8%), followed by aromatics (20.1%), alkenes (17.9%), and halo-hydrocarbons (12.5%). The daily trend of the VOC concentration showed a bimodal feature due to the rush-hour traffic in the morning and at nightfall. Based on the VOC concentration, a receptor model of Positive Matrix Factorization (PMF) coupled with the information related to VOC sources was applied to identify the major VOC emissions. The result showed five major VOC sources: solvent use and industrial processes were responsible for about 30% of the ambient VOCs, followed by rubber chemical industrial emissions (23%), refinery and petrochemical industrial emissions (21%), fuel evaporations (13%) and vehicular emissions (13%). The contribution of generalized industrial emissions was about 74% and significantly higher than that made by vehicle exhaust. Using a propylene-equivalent method, alkenes displayed the highest concentration, followed by aromatics and alkanes. Based on a maximum incremental reactivity (MIR) method, the average hourly ozone formation potential (OFP) of VOCs is 220.49 ppbv. The most significant source for ozone chemical formation was identified to be rubber chemical industrial emissions, following one by vehicular emission. The data shown herein may provide useful information to develop effective VOC pollution control strategies in industrialized area. Source profiles (percentage of species total) resolved from Positive Matrix Factorization (PMF). [Display omitted]
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2018.05.027