Loading…

An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals

Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figure...

Full description

Saved in:
Bibliographic Details
Published in:Physiological and biochemical zoology 2007-11, Vol.80 (6), p.643-651
Main Author: Willis, Craig K. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate
ISSN:1522-2152
1537-5293
DOI:10.1086/521085