Loading…
A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biologica...
Saved in:
Published in: | Nanoscale 2018-11, Vol.1 (41), p.19297-1939 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953 |
container_end_page | 1939 |
container_issue | 41 |
container_start_page | 19297 |
container_title | Nanoscale |
container_volume | 1 |
creator | Tapio, Kosti Shao, Dongkai Auer, Sanna Tuppurainen, Jussipekka Ahlskog, Markus Hytönen, Vesa P Toppari, J. Jussi |
description | Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter
via
an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage.
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing. |
doi_str_mv | 10.1039/c8nr05535a |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2103679660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124789981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMorq5evCsBLyJU06ZJk2NZP2FZQfRc0nQiXdt0TVph_3uzH67gacJ7vxkm8xA6i8lNTKi81cI6whhlag8dJSQlEaVZsr9783SEjr2fE8Il5fQQjShJiExZcoQ-c3w3yyOrbLdQrq91A1jpflB95zBYVTa1_cDdIjiqwW1n62CsJYNXTT7IEPRvaMH2Hte2GjRUuFxiZTE0oHtXa2xqaKoTdGBU4-F0W8fo_eH-bfIUTV8enyf5NNI0o31UEpFSLhjQSgKLaQnhN0ZlUkjNywqUZClTgmY61bGpUsqMMaw0mplYC8noGF1t5i5c9zWA74u29hqaRlnoBl8k4Wo8k5yTgF7-Q-fd4GzYLlBJmgkpRRyo6w2lXee9A1MsXN0qtyxiUqwiKCZi9rqOIA_wxXbkULZQ7dDfmwfgfAM4r3fuX4b0B4hbi7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124789981</pqid></control><display><type>article</type><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</creator><creatorcontrib>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</creatorcontrib><description>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter
via
an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage.
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr05535a</identifier><identifier>PMID: 30209452</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuators ; Avidin - chemistry ; Biomolecules ; Biotinylation ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Electric fields ; Electricity ; Fluorescence ; Gold ; Gold - chemistry ; Immobilized Nucleic Acids - chemistry ; Inspection ; Metal Nanoparticles - chemistry ; Nanoparticles ; Nanostructures - chemistry ; Nucleic Acid Conformation ; Optical Imaging ; Raman spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Surface Plasmon Resonance</subject><ispartof>Nanoscale, 2018-11, Vol.1 (41), p.19297-1939</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</citedby><cites>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</cites><orcidid>0000-0002-1698-5591 ; 0000-0001-9204-8762 ; 0000-0002-9357-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30209452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapio, Kosti</creatorcontrib><creatorcontrib>Shao, Dongkai</creatorcontrib><creatorcontrib>Auer, Sanna</creatorcontrib><creatorcontrib>Tuppurainen, Jussipekka</creatorcontrib><creatorcontrib>Ahlskog, Markus</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter
via
an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage.
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</description><subject>Actuators</subject><subject>Avidin - chemistry</subject><subject>Biomolecules</subject><subject>Biotinylation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Immobilized Nucleic Acids - chemistry</subject><subject>Inspection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic Acid Conformation</subject><subject>Optical Imaging</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface Plasmon Resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMorq5evCsBLyJU06ZJk2NZP2FZQfRc0nQiXdt0TVph_3uzH67gacJ7vxkm8xA6i8lNTKi81cI6whhlag8dJSQlEaVZsr9783SEjr2fE8Il5fQQjShJiExZcoQ-c3w3yyOrbLdQrq91A1jpflB95zBYVTa1_cDdIjiqwW1n62CsJYNXTT7IEPRvaMH2Hte2GjRUuFxiZTE0oHtXa2xqaKoTdGBU4-F0W8fo_eH-bfIUTV8enyf5NNI0o31UEpFSLhjQSgKLaQnhN0ZlUkjNywqUZClTgmY61bGpUsqMMaw0mplYC8noGF1t5i5c9zWA74u29hqaRlnoBl8k4Wo8k5yTgF7-Q-fd4GzYLlBJmgkpRRyo6w2lXee9A1MsXN0qtyxiUqwiKCZi9rqOIA_wxXbkULZQ7dDfmwfgfAM4r3fuX4b0B4hbi7Q</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Tapio, Kosti</creator><creator>Shao, Dongkai</creator><creator>Auer, Sanna</creator><creator>Tuppurainen, Jussipekka</creator><creator>Ahlskog, Markus</creator><creator>Hytönen, Vesa P</creator><creator>Toppari, J. Jussi</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1698-5591</orcidid><orcidid>https://orcid.org/0000-0001-9204-8762</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid></search><sort><creationdate>20181107</creationdate><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><author>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Avidin - chemistry</topic><topic>Biomolecules</topic><topic>Biotinylation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Immobilized Nucleic Acids - chemistry</topic><topic>Inspection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic Acid Conformation</topic><topic>Optical Imaging</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapio, Kosti</creatorcontrib><creatorcontrib>Shao, Dongkai</creatorcontrib><creatorcontrib>Auer, Sanna</creatorcontrib><creatorcontrib>Tuppurainen, Jussipekka</creatorcontrib><creatorcontrib>Ahlskog, Markus</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapio, Kosti</au><au>Shao, Dongkai</au><au>Auer, Sanna</au><au>Tuppurainen, Jussipekka</au><au>Ahlskog, Markus</au><au>Hytönen, Vesa P</au><au>Toppari, J. Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>1</volume><issue>41</issue><spage>19297</spage><epage>1939</epage><pages>19297-1939</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter
via
an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage.
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30209452</pmid><doi>10.1039/c8nr05535a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1698-5591</orcidid><orcidid>https://orcid.org/0000-0001-9204-8762</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-11, Vol.1 (41), p.19297-1939 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2103679660 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Actuators Avidin - chemistry Biomolecules Biotinylation Deoxyribonucleic acid DNA DNA, Single-Stranded - chemistry Electric fields Electricity Fluorescence Gold Gold - chemistry Immobilized Nucleic Acids - chemistry Inspection Metal Nanoparticles - chemistry Nanoparticles Nanostructures - chemistry Nucleic Acid Conformation Optical Imaging Raman spectroscopy Spectrum analysis Spectrum Analysis, Raman Surface Plasmon Resonance |
title | A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DNA-nanoparticle%20actuator%20enabling%20optical%20monitoring%20of%20nanoscale%20movements%20induced%20by%20an%20electric%20field&rft.jtitle=Nanoscale&rft.au=Tapio,%20Kosti&rft.date=2018-11-07&rft.volume=1&rft.issue=41&rft.spage=19297&rft.epage=1939&rft.pages=19297-1939&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr05535a&rft_dat=%3Cproquest_rsc_p%3E2124789981%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124789981&rft_id=info:pmid/30209452&rfr_iscdi=true |