Loading…

A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field

Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biologica...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2018-11, Vol.1 (41), p.19297-1939
Main Authors: Tapio, Kosti, Shao, Dongkai, Auer, Sanna, Tuppurainen, Jussipekka, Ahlskog, Markus, Hytönen, Vesa P, Toppari, J. Jussi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953
cites cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953
container_end_page 1939
container_issue 41
container_start_page 19297
container_title Nanoscale
container_volume 1
creator Tapio, Kosti
Shao, Dongkai
Auer, Sanna
Tuppurainen, Jussipekka
Ahlskog, Markus
Hytönen, Vesa P
Toppari, J. Jussi
description Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage. Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.
doi_str_mv 10.1039/c8nr05535a
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2103679660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124789981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMorq5evCsBLyJU06ZJk2NZP2FZQfRc0nQiXdt0TVph_3uzH67gacJ7vxkm8xA6i8lNTKi81cI6whhlag8dJSQlEaVZsr9783SEjr2fE8Il5fQQjShJiExZcoQ-c3w3yyOrbLdQrq91A1jpflB95zBYVTa1_cDdIjiqwW1n62CsJYNXTT7IEPRvaMH2Hte2GjRUuFxiZTE0oHtXa2xqaKoTdGBU4-F0W8fo_eH-bfIUTV8enyf5NNI0o31UEpFSLhjQSgKLaQnhN0ZlUkjNywqUZClTgmY61bGpUsqMMaw0mplYC8noGF1t5i5c9zWA74u29hqaRlnoBl8k4Wo8k5yTgF7-Q-fd4GzYLlBJmgkpRRyo6w2lXee9A1MsXN0qtyxiUqwiKCZi9rqOIA_wxXbkULZQ7dDfmwfgfAM4r3fuX4b0B4hbi7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124789981</pqid></control><display><type>article</type><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</creator><creatorcontrib>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</creatorcontrib><description>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage. Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr05535a</identifier><identifier>PMID: 30209452</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuators ; Avidin - chemistry ; Biomolecules ; Biotinylation ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Electric fields ; Electricity ; Fluorescence ; Gold ; Gold - chemistry ; Immobilized Nucleic Acids - chemistry ; Inspection ; Metal Nanoparticles - chemistry ; Nanoparticles ; Nanostructures - chemistry ; Nucleic Acid Conformation ; Optical Imaging ; Raman spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Surface Plasmon Resonance</subject><ispartof>Nanoscale, 2018-11, Vol.1 (41), p.19297-1939</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</citedby><cites>FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</cites><orcidid>0000-0002-1698-5591 ; 0000-0001-9204-8762 ; 0000-0002-9357-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30209452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapio, Kosti</creatorcontrib><creatorcontrib>Shao, Dongkai</creatorcontrib><creatorcontrib>Auer, Sanna</creatorcontrib><creatorcontrib>Tuppurainen, Jussipekka</creatorcontrib><creatorcontrib>Ahlskog, Markus</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage. Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</description><subject>Actuators</subject><subject>Avidin - chemistry</subject><subject>Biomolecules</subject><subject>Biotinylation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Immobilized Nucleic Acids - chemistry</subject><subject>Inspection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic Acid Conformation</subject><subject>Optical Imaging</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface Plasmon Resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMorq5evCsBLyJU06ZJk2NZP2FZQfRc0nQiXdt0TVph_3uzH67gacJ7vxkm8xA6i8lNTKi81cI6whhlag8dJSQlEaVZsr9783SEjr2fE8Il5fQQjShJiExZcoQ-c3w3yyOrbLdQrq91A1jpflB95zBYVTa1_cDdIjiqwW1n62CsJYNXTT7IEPRvaMH2Hte2GjRUuFxiZTE0oHtXa2xqaKoTdGBU4-F0W8fo_eH-bfIUTV8enyf5NNI0o31UEpFSLhjQSgKLaQnhN0ZlUkjNywqUZClTgmY61bGpUsqMMaw0mplYC8noGF1t5i5c9zWA74u29hqaRlnoBl8k4Wo8k5yTgF7-Q-fd4GzYLlBJmgkpRRyo6w2lXee9A1MsXN0qtyxiUqwiKCZi9rqOIA_wxXbkULZQ7dDfmwfgfAM4r3fuX4b0B4hbi7Q</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Tapio, Kosti</creator><creator>Shao, Dongkai</creator><creator>Auer, Sanna</creator><creator>Tuppurainen, Jussipekka</creator><creator>Ahlskog, Markus</creator><creator>Hytönen, Vesa P</creator><creator>Toppari, J. Jussi</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1698-5591</orcidid><orcidid>https://orcid.org/0000-0001-9204-8762</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid></search><sort><creationdate>20181107</creationdate><title>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</title><author>Tapio, Kosti ; Shao, Dongkai ; Auer, Sanna ; Tuppurainen, Jussipekka ; Ahlskog, Markus ; Hytönen, Vesa P ; Toppari, J. Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Avidin - chemistry</topic><topic>Biomolecules</topic><topic>Biotinylation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Immobilized Nucleic Acids - chemistry</topic><topic>Inspection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic Acid Conformation</topic><topic>Optical Imaging</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapio, Kosti</creatorcontrib><creatorcontrib>Shao, Dongkai</creatorcontrib><creatorcontrib>Auer, Sanna</creatorcontrib><creatorcontrib>Tuppurainen, Jussipekka</creatorcontrib><creatorcontrib>Ahlskog, Markus</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapio, Kosti</au><au>Shao, Dongkai</au><au>Auer, Sanna</au><au>Tuppurainen, Jussipekka</au><au>Ahlskog, Markus</au><au>Hytönen, Vesa P</au><au>Toppari, J. Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>1</volume><issue>41</issue><spage>19297</spage><epage>1939</epage><pages>19297-1939</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spectroscopy. After this basic characterization, another actuator was built utilizing hairpin-DNA coated gold nanoparticles, where the hairpin-DNA induced discrete transitions between two specific open-loop and folded-loop states. These two states and the transition dynamics between them were clearly visible in the actuator behavior. The demonstrated nanoactuator concept could be readily extended to inspection of conformational changes of other biomolecules as well. Besides, this concept enables other possibilities in applications like surface-enhanced Raman spectroscopy and fluorescence enhancement, since the specific wavelength of the plasmon resonance of the actuator can be tuned by the external voltage. Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application for example in diagnostics and biosensing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30209452</pmid><doi>10.1039/c8nr05535a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1698-5591</orcidid><orcidid>https://orcid.org/0000-0001-9204-8762</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-11, Vol.1 (41), p.19297-1939
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2103679660
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Actuators
Avidin - chemistry
Biomolecules
Biotinylation
Deoxyribonucleic acid
DNA
DNA, Single-Stranded - chemistry
Electric fields
Electricity
Fluorescence
Gold
Gold - chemistry
Immobilized Nucleic Acids - chemistry
Inspection
Metal Nanoparticles - chemistry
Nanoparticles
Nanostructures - chemistry
Nucleic Acid Conformation
Optical Imaging
Raman spectroscopy
Spectrum analysis
Spectrum Analysis, Raman
Surface Plasmon Resonance
title A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DNA-nanoparticle%20actuator%20enabling%20optical%20monitoring%20of%20nanoscale%20movements%20induced%20by%20an%20electric%20field&rft.jtitle=Nanoscale&rft.au=Tapio,%20Kosti&rft.date=2018-11-07&rft.volume=1&rft.issue=41&rft.spage=19297&rft.epage=1939&rft.pages=19297-1939&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr05535a&rft_dat=%3Cproquest_rsc_p%3E2124789981%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b0843685e3d9e513be372fa7989c6bdea9545a837c4c1fd435fff5bfc5f1c8953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124789981&rft_id=info:pmid/30209452&rfr_iscdi=true