Loading…
NADPH-diaphorase activity in the central nervous system of the Gray mussel Crenomytilus grayanus (Dunker) under stress conditions: A histochemical study
NADPH-diaphorase (NADPH-d) is a histochemical marker for nitric oxide synthase (NOS) and is widely used to identify nitric oxide (NO) producing cells in the central nervous system (CNS) of both vertebrates and invertebrates. NADPH-d histochemistry was used to quantitatively characterize putative NO-...
Saved in:
Published in: | Marine environmental research 2008-08, Vol.66 (2), p.249-258 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NADPH-diaphorase (NADPH-d) is a histochemical marker for nitric oxide synthase (NOS) and is widely used to identify nitric oxide (NO) producing cells in the central nervous system (CNS) of both vertebrates and invertebrates. NADPH-d histochemistry was used to quantitatively characterize putative NO-producing neurons in the CNS of the Gray mussel
Crenomytilus grayanus subjected to two kinds of stress, environmental pollution and hypoxia, the latter caused by the mollusk transportation in a small volume of water. Mussels were sampled from one relatively clean (reference) and four polluted sites in Amursky and Ussuriysky Bays (Peter the Great Bay, Sea of Japan) in August, 2003. The number of NADPH-d-positive neurons was estimated and enzyme activity was determined from the optical density of the formazan precipitate in the CNS ganglia at 0, 3, and 72
h after sampling. Just after sampling, NADPH-d-positive neurons were found in the cerebropleural, visceral, and pedal ganglia. The number and staining intensity of NADPH-d-positive neurons were significantly higher in the pedal ganglia than the other two ganglia. There were significant differences in the number of NADPH-d-positive neurons and enzyme activity between the mussels from the reference and heavily polluted stations. The proportion and staining intensity of NADPH-d-positive neurons were maximum in the pedal ganglia of the mussels from the heavily polluted station in Amursky Bay. Transportation of mussels in a limited volume of water for 3
h resulted in a significant increase in the proportion and staining intensity of NADPH-d-positive neurons in all ganglia. In mollusks from all stations kept in aerated aquaria for 72
h, both the proportion and staining intensity of NADPH-d-positive neurons did not differ significantly from the initial level. However, the differences in the proportion and staining intensity of NADPH-d-positive neurons between the reference and heavily polluted stations were significant. The present results suggest that NO is involved in mollusk nerve cell adaptation to environmental changes. |
---|---|
ISSN: | 0141-1136 1879-0291 |
DOI: | 10.1016/j.marenvres.2008.03.001 |