Loading…
Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems
In the present study, cometabolic TCE degradation was evaluated using NH 4–N as the growth-substrate. At initial TCE concentrations up to 845 μg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological tr...
Saved in:
Published in: | Bioresource technology 2010, Vol.101 (1), p.430-433 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253 |
container_end_page | 433 |
container_issue | 1 |
container_start_page | 430 |
container_title | Bioresource technology |
container_volume | 101 |
creator | Kocamemi, B. Alpaslan Çeçen, F. |
description | In the present study, cometabolic TCE degradation was evaluated using NH
4–N as the growth-substrate. At initial TCE concentrations up to 845
μg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (
T
y
) of TCE, the amount of TCE degraded per unit mass of NH
4–N, strongly depended on the initial NH
4–N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH
4–N concentrations, a linear relationship was developed between 1/
T
y
and the initial NH
4–N/TCE ratio. The estimated
T
y
values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism. |
doi_str_mv | 10.1016/j.biortech.2009.07.079 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21090309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085240900916X</els_id><sourcerecordid>21090309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EakPpX6j2AoLDhvFH1vYNiApFqsSlnC2vM8462l0X26nIv8dRAhwrjfRenndm9BByQ2FJgXYfd8s-xFTQDUsGoJcg6-gXZEGV5C3TsntJFqA7aNWKiUvyOucdAHAq2QW5pFoyzYEuyPZLiGPcBmfHJuEUn2pG35QBm984x3qkBNeUFNwwxhSxDIcRZ2zeP6xvP1Qsxf12aFycsNg-jiFPTZibOdSGP4R52-RDLjjlN-SVt2PG63NekZ9fbx_Wd-39j2_f15_vWyeYKu1GWFRUK-Ed2E5Iq3zvNVW8FwhMCs6sVCupqOWdd9yBVFx5pwSznK7Yil-Rd6e9jyn-2mMuZgrZ4TjaGeM-G0ZBAwddwe4EuhRzTujNYwqTTQdDwRwVm535q9gcFRuQdY7Fm_OFfT_h5n_t7LQCb8-AzVWrT3Z2If_jGAMhOnF89dOJw-rjKWAy2QWcHW5CQlfMJobnfvkD4Umeqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21090309</pqid></control><display><type>article</type><title>Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems</title><source>Elsevier</source><creator>Kocamemi, B. Alpaslan ; Çeçen, F.</creator><creatorcontrib>Kocamemi, B. Alpaslan ; Çeçen, F.</creatorcontrib><description>In the present study, cometabolic TCE degradation was evaluated using NH
4–N as the growth-substrate. At initial TCE concentrations up to 845
μg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (
T
y
) of TCE, the amount of TCE degraded per unit mass of NH
4–N, strongly depended on the initial NH
4–N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH
4–N concentrations, a linear relationship was developed between 1/
T
y
and the initial NH
4–N/TCE ratio. The estimated
T
y
values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2009.07.079</identifier><identifier>PMID: 19729301</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated sludge ; Biodegradation, Environmental ; Biological and medical sciences ; Biological treatment of sewage sludges and wastes ; Bioreactors - microbiology ; Biotechnology ; Coculture Techniques - methods ; Cometabolism ; Computer Simulation ; Environment and pollution ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; Industrial Waste - prevention & control ; Models, Biological ; Nitrification ; Nitrogen - metabolism ; Trichloroethylene ; Trichloroethylene - metabolism ; Water Pollutants, Chemical - metabolism ; Water Purification - methods ; Xenobiotics ; Xenobiotics - metabolism</subject><ispartof>Bioresource technology, 2010, Vol.101 (1), p.430-433</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253</citedby><cites>FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22044645$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19729301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocamemi, B. Alpaslan</creatorcontrib><creatorcontrib>Çeçen, F.</creatorcontrib><title>Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>In the present study, cometabolic TCE degradation was evaluated using NH
4–N as the growth-substrate. At initial TCE concentrations up to 845
μg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (
T
y
) of TCE, the amount of TCE degraded per unit mass of NH
4–N, strongly depended on the initial NH
4–N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH
4–N concentrations, a linear relationship was developed between 1/
T
y
and the initial NH
4–N/TCE ratio. The estimated
T
y
values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.</description><subject>Activated sludge</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of sewage sludges and wastes</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Coculture Techniques - methods</subject><subject>Cometabolism</subject><subject>Computer Simulation</subject><subject>Environment and pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Waste - prevention & control</subject><subject>Models, Biological</subject><subject>Nitrification</subject><subject>Nitrogen - metabolism</subject><subject>Trichloroethylene</subject><subject>Trichloroethylene - metabolism</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Purification - methods</subject><subject>Xenobiotics</subject><subject>Xenobiotics - metabolism</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EakPpX6j2AoLDhvFH1vYNiApFqsSlnC2vM8462l0X26nIv8dRAhwrjfRenndm9BByQ2FJgXYfd8s-xFTQDUsGoJcg6-gXZEGV5C3TsntJFqA7aNWKiUvyOucdAHAq2QW5pFoyzYEuyPZLiGPcBmfHJuEUn2pG35QBm984x3qkBNeUFNwwxhSxDIcRZ2zeP6xvP1Qsxf12aFycsNg-jiFPTZibOdSGP4R52-RDLjjlN-SVt2PG63NekZ9fbx_Wd-39j2_f15_vWyeYKu1GWFRUK-Ed2E5Iq3zvNVW8FwhMCs6sVCupqOWdd9yBVFx5pwSznK7Yil-Rd6e9jyn-2mMuZgrZ4TjaGeM-G0ZBAwddwe4EuhRzTujNYwqTTQdDwRwVm535q9gcFRuQdY7Fm_OFfT_h5n_t7LQCb8-AzVWrT3Z2If_jGAMhOnF89dOJw-rjKWAy2QWcHW5CQlfMJobnfvkD4Umeqg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kocamemi, B. Alpaslan</creator><creator>Çeçen, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>2010</creationdate><title>Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems</title><author>Kocamemi, B. Alpaslan ; Çeçen, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activated sludge</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of sewage sludges and wastes</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Coculture Techniques - methods</topic><topic>Cometabolism</topic><topic>Computer Simulation</topic><topic>Environment and pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Waste - prevention & control</topic><topic>Models, Biological</topic><topic>Nitrification</topic><topic>Nitrogen - metabolism</topic><topic>Trichloroethylene</topic><topic>Trichloroethylene - metabolism</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Purification - methods</topic><topic>Xenobiotics</topic><topic>Xenobiotics - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocamemi, B. Alpaslan</creatorcontrib><creatorcontrib>Çeçen, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocamemi, B. Alpaslan</au><au>Çeçen, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2010</date><risdate>2010</risdate><volume>101</volume><issue>1</issue><spage>430</spage><epage>433</epage><pages>430-433</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>In the present study, cometabolic TCE degradation was evaluated using NH
4–N as the growth-substrate. At initial TCE concentrations up to 845
μg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (
T
y
) of TCE, the amount of TCE degraded per unit mass of NH
4–N, strongly depended on the initial NH
4–N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH
4–N concentrations, a linear relationship was developed between 1/
T
y
and the initial NH
4–N/TCE ratio. The estimated
T
y
values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19729301</pmid><doi>10.1016/j.biortech.2009.07.079</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2010, Vol.101 (1), p.430-433 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_21090309 |
source | Elsevier |
subjects | Activated sludge Biodegradation, Environmental Biological and medical sciences Biological treatment of sewage sludges and wastes Bioreactors - microbiology Biotechnology Coculture Techniques - methods Cometabolism Computer Simulation Environment and pollution Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects Industrial Waste - prevention & control Models, Biological Nitrification Nitrogen - metabolism Trichloroethylene Trichloroethylene - metabolism Water Pollutants, Chemical - metabolism Water Purification - methods Xenobiotics Xenobiotics - metabolism |
title | Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20removal%20of%20the%20xenobiotic%20trichloroethylene%20(TCE)%20through%20cometabolism%20in%20nitrifying%20systems&rft.jtitle=Bioresource%20technology&rft.au=Kocamemi,%20B.%20Alpaslan&rft.date=2010&rft.volume=101&rft.issue=1&rft.spage=430&rft.epage=433&rft.pages=430-433&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2009.07.079&rft_dat=%3Cproquest_cross%3E21090309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-d4ae81984fc0a647a8fbf9183b4e027432a785781a36fc3c07838fc842a315253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21090309&rft_id=info:pmid/19729301&rfr_iscdi=true |