Loading…
Preparation of a New Type of Black TiO2 under a Vacuum Atmosphere for Sunlight Photocatalysis
Black TiO2 as a solar-driven photocatalyst has attracted enormous attention from scientists and engineers in water and wastewater treatment field. Most of the methods used for the preparation of black TiO2 are thermal treatment under a hydrogen atmosphere. Nevertheless, it is well known that working...
Saved in:
Published in: | ACS applied materials & interfaces 2018-10, Vol.10 (41), p.35316-35326 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Black TiO2 as a solar-driven photocatalyst has attracted enormous attention from scientists and engineers in water and wastewater treatment field. Most of the methods used for the preparation of black TiO2 are thermal treatment under a hydrogen atmosphere. Nevertheless, it is well known that working with hydrogen is not safe and needs special maintenance. Here, for the first time, we prepared black TiO2 by sintering P25 pellets at different temperatures (500–800 °C) under a vacuum atmosphere that showed the same performance with the prepared black TiO2 under a hydrogen atmosphere. The samples were characterized by X-ray diffraction, Raman spectra field emission scanning electron microscopy, transmission electron microscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and ultraviolet–visible deep resistivity sounding techniques. The differences between the formation of oxygen vacancy density and color turning in sintered powder and pellet were also studied. The results showed that the color of the P25 powder became darker after sintering but not completely turning to black, whereas the P25 pellets completely turned black after sintering. The resultant black TiO2 was used for the photocatalytic degradation of the acetaminophen (ACE) in aqueous solution under AM 1.5G solar light illumination; it was found that the P25 pellet sintered in 500 °C had the highest photocatalytic performance for ACE degradation under AM 1.5G solar light illumination. The photocatalytic activity of prepared black TiO2 under vacuum and hydrogen atmospheres was also compared together; the results showed that photocatalytic activities of both samples were so close together. The existence of the oxygen vacancy after 6 months and long and short-term stability (by application for photocatalytic degradation of ACE in an aqueous solution) of the black TiO2 pellets was also studied; the results showed that the TiO2 pellets in aqueous phase had acceptable stability. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b14680 |