Loading…
Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae
A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been propose...
Saved in:
Published in: | Free radical biology & medicine 2018-12, Vol.129, p.97-106 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473 |
container_end_page | 106 |
container_issue | |
container_start_page | 97 |
container_title | Free radical biology & medicine |
container_volume | 129 |
creator | Choi, Ji Eun Heo, Seo-Hee Kim, Myung Ju Chung, Woo-Hyun |
description | A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.
[Display omitted]
•SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk. |
doi_str_mv | 10.1016/j.freeradbiomed.2018.09.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2109335733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584918311110</els_id><sourcerecordid>2109335733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS1ERYfCLyBLbNgk2LGdxGKFqrYgjcSisLacl2fwMIkH2xl1PqT_i6NpF-xYWfI7995nX0Lec1ZzxtuPu9pFxGjHwYcJx7phvK-ZrhlXL8iG952opNLtS7JhveaV6qW-JK9T2jHGpBL9K3IpWNOIItuQx62F3zQ4mpYDxvDgR6SjT9OSbULqZ2ppSVKcrjdzpvhgAeNgMyb6E-cweShUynbwe59P1M4jXV1s9kekKUdMqSpb-qIYKZxyyGUMK1rM7y3ALxvDdILiV4zx6JO3-IZcOLtP-PbpvCI_bm--X3-ptt_uvl5_3lYgepGrTgkJWlvBB9C208o56ZpWadlJaBsJveWCdVINgwMtB8d66-TYD9hKIWUnrsiHs-8hhj8LpmwmnwD3eztjWJJpONNCqE6Ign46oxBDShGdOUQ_2XgynJm1F7Mz__Ri1l4M06b0UtTvnoKWYZ09a5-LKMDNGcDy3KPHaBJ4nKH8XETIZgz-v4L-As2FqkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109335733</pqid></control><display><type>article</type><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><source>Elsevier</source><creator>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</creator><creatorcontrib>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</creatorcontrib><description>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.
[Display omitted]
•SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2018.09.015</identifier><identifier>PMID: 30223018</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA damage checkpoint ; Double-strand break ; Homologous recombination ; Rad51 ; Reactive oxygen species ; Sod1</subject><ispartof>Free radical biology & medicine, 2018-12, Vol.129, p.97-106</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</citedby><cites>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30223018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Ji Eun</creatorcontrib><creatorcontrib>Heo, Seo-Hee</creatorcontrib><creatorcontrib>Kim, Myung Ju</creatorcontrib><creatorcontrib>Chung, Woo-Hyun</creatorcontrib><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.
[Display omitted]
•SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</description><subject>DNA damage checkpoint</subject><subject>Double-strand break</subject><subject>Homologous recombination</subject><subject>Rad51</subject><subject>Reactive oxygen species</subject><subject>Sod1</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAURS1ERYfCLyBLbNgk2LGdxGKFqrYgjcSisLacl2fwMIkH2xl1PqT_i6NpF-xYWfI7995nX0Lec1ZzxtuPu9pFxGjHwYcJx7phvK-ZrhlXL8iG952opNLtS7JhveaV6qW-JK9T2jHGpBL9K3IpWNOIItuQx62F3zQ4mpYDxvDgR6SjT9OSbULqZ2ppSVKcrjdzpvhgAeNgMyb6E-cweShUynbwe59P1M4jXV1s9kekKUdMqSpb-qIYKZxyyGUMK1rM7y3ALxvDdILiV4zx6JO3-IZcOLtP-PbpvCI_bm--X3-ptt_uvl5_3lYgepGrTgkJWlvBB9C208o56ZpWadlJaBsJveWCdVINgwMtB8d66-TYD9hKIWUnrsiHs-8hhj8LpmwmnwD3eztjWJJpONNCqE6Ign46oxBDShGdOUQ_2XgynJm1F7Mz__Ri1l4M06b0UtTvnoKWYZ09a5-LKMDNGcDy3KPHaBJ4nKH8XETIZgz-v4L-As2FqkU</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Choi, Ji Eun</creator><creator>Heo, Seo-Hee</creator><creator>Kim, Myung Ju</creator><creator>Chung, Woo-Hyun</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><author>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>DNA damage checkpoint</topic><topic>Double-strand break</topic><topic>Homologous recombination</topic><topic>Rad51</topic><topic>Reactive oxygen species</topic><topic>Sod1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ji Eun</creatorcontrib><creatorcontrib>Heo, Seo-Hee</creatorcontrib><creatorcontrib>Kim, Myung Ju</creatorcontrib><creatorcontrib>Chung, Woo-Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ji Eun</au><au>Heo, Seo-Hee</au><au>Kim, Myung Ju</au><au>Chung, Woo-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2018-12</date><risdate>2018</risdate><volume>129</volume><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.
[Display omitted]
•SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30223018</pmid><doi>10.1016/j.freeradbiomed.2018.09.015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2018-12, Vol.129, p.97-106 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_proquest_miscellaneous_2109335733 |
source | Elsevier |
subjects | DNA damage checkpoint Double-strand break Homologous recombination Rad51 Reactive oxygen species Sod1 |
title | Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20superoxide%20dismutase%20in%20a%20rad51%20mutant%20exacerbates%20genomic%20instability%20and%20oxidative%20stress-mediated%20cytotoxicity%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Choi,%20Ji%20Eun&rft.date=2018-12&rft.volume=129&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2018.09.015&rft_dat=%3Cproquest_cross%3E2109335733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2109335733&rft_id=info:pmid/30223018&rfr_iscdi=true |