Loading…

Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae

A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been propose...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2018-12, Vol.129, p.97-106
Main Authors: Choi, Ji Eun, Heo, Seo-Hee, Kim, Myung Ju, Chung, Woo-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473
cites cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473
container_end_page 106
container_issue
container_start_page 97
container_title Free radical biology & medicine
container_volume 129
creator Choi, Ji Eun
Heo, Seo-Hee
Kim, Myung Ju
Chung, Woo-Hyun
description A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival. [Display omitted] •SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.
doi_str_mv 10.1016/j.freeradbiomed.2018.09.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2109335733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584918311110</els_id><sourcerecordid>2109335733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS1ERYfCLyBLbNgk2LGdxGKFqrYgjcSisLacl2fwMIkH2xl1PqT_i6NpF-xYWfI7995nX0Lec1ZzxtuPu9pFxGjHwYcJx7phvK-ZrhlXL8iG952opNLtS7JhveaV6qW-JK9T2jHGpBL9K3IpWNOIItuQx62F3zQ4mpYDxvDgR6SjT9OSbULqZ2ppSVKcrjdzpvhgAeNgMyb6E-cweShUynbwe59P1M4jXV1s9kekKUdMqSpb-qIYKZxyyGUMK1rM7y3ALxvDdILiV4zx6JO3-IZcOLtP-PbpvCI_bm--X3-ptt_uvl5_3lYgepGrTgkJWlvBB9C208o56ZpWadlJaBsJveWCdVINgwMtB8d66-TYD9hKIWUnrsiHs-8hhj8LpmwmnwD3eztjWJJpONNCqE6Ign46oxBDShGdOUQ_2XgynJm1F7Mz__Ri1l4M06b0UtTvnoKWYZ09a5-LKMDNGcDy3KPHaBJ4nKH8XETIZgz-v4L-As2FqkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109335733</pqid></control><display><type>article</type><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><source>Elsevier</source><creator>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</creator><creatorcontrib>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</creatorcontrib><description>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival. [Display omitted] •SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2018.09.015</identifier><identifier>PMID: 30223018</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA damage checkpoint ; Double-strand break ; Homologous recombination ; Rad51 ; Reactive oxygen species ; Sod1</subject><ispartof>Free radical biology &amp; medicine, 2018-12, Vol.129, p.97-106</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</citedby><cites>FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30223018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Ji Eun</creatorcontrib><creatorcontrib>Heo, Seo-Hee</creatorcontrib><creatorcontrib>Kim, Myung Ju</creatorcontrib><creatorcontrib>Chung, Woo-Hyun</creatorcontrib><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival. [Display omitted] •SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</description><subject>DNA damage checkpoint</subject><subject>Double-strand break</subject><subject>Homologous recombination</subject><subject>Rad51</subject><subject>Reactive oxygen species</subject><subject>Sod1</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAURS1ERYfCLyBLbNgk2LGdxGKFqrYgjcSisLacl2fwMIkH2xl1PqT_i6NpF-xYWfI7995nX0Lec1ZzxtuPu9pFxGjHwYcJx7phvK-ZrhlXL8iG952opNLtS7JhveaV6qW-JK9T2jHGpBL9K3IpWNOIItuQx62F3zQ4mpYDxvDgR6SjT9OSbULqZ2ppSVKcrjdzpvhgAeNgMyb6E-cweShUynbwe59P1M4jXV1s9kekKUdMqSpb-qIYKZxyyGUMK1rM7y3ALxvDdILiV4zx6JO3-IZcOLtP-PbpvCI_bm--X3-ptt_uvl5_3lYgepGrTgkJWlvBB9C208o56ZpWadlJaBsJveWCdVINgwMtB8d66-TYD9hKIWUnrsiHs-8hhj8LpmwmnwD3eztjWJJpONNCqE6Ign46oxBDShGdOUQ_2XgynJm1F7Mz__Ri1l4M06b0UtTvnoKWYZ09a5-LKMDNGcDy3KPHaBJ4nKH8XETIZgz-v4L-As2FqkU</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Choi, Ji Eun</creator><creator>Heo, Seo-Hee</creator><creator>Kim, Myung Ju</creator><creator>Chung, Woo-Hyun</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</title><author>Choi, Ji Eun ; Heo, Seo-Hee ; Kim, Myung Ju ; Chung, Woo-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>DNA damage checkpoint</topic><topic>Double-strand break</topic><topic>Homologous recombination</topic><topic>Rad51</topic><topic>Reactive oxygen species</topic><topic>Sod1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ji Eun</creatorcontrib><creatorcontrib>Heo, Seo-Hee</creatorcontrib><creatorcontrib>Kim, Myung Ju</creatorcontrib><creatorcontrib>Chung, Woo-Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ji Eun</au><au>Heo, Seo-Hee</au><au>Kim, Myung Ju</au><au>Chung, Woo-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2018-12</date><risdate>2018</risdate><volume>129</volume><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival. [Display omitted] •SOD1 inhibition can be used for selective killing of cancer cells deficient in homologous recombination pathway.•Deletion of RAD51 and SOD1 does not show synthetic lethality in budding yeast.•Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51.•Accumulation of Rad51 deficiency-mediated DSB lesions increases intracellular ROS levels in the absence of Sod1.•DSB repair pathways and ROS response signaling have significant mutual genetic crosstalk.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30223018</pmid><doi>10.1016/j.freeradbiomed.2018.09.015</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2018-12, Vol.129, p.97-106
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_2109335733
source Elsevier
subjects DNA damage checkpoint
Double-strand break
Homologous recombination
Rad51
Reactive oxygen species
Sod1
title Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20superoxide%20dismutase%20in%20a%20rad51%20mutant%20exacerbates%20genomic%20instability%20and%20oxidative%20stress-mediated%20cytotoxicity%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Choi,%20Ji%20Eun&rft.date=2018-12&rft.volume=129&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2018.09.015&rft_dat=%3Cproquest_cross%3E2109335733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-7534c99a31bc9a795ff4f2659474c624c8a130745bbfc94bf08af4d8be6434473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2109335733&rft_id=info:pmid/30223018&rfr_iscdi=true