Loading…

Microsynteny analysis to understand evolution and impact of polyploidization on MIR319 family within Brassicaceae

The availability of a large number of whole-genome sequences allows comparative genomic analysis to reveal and understand evolution of regulatory regions and elements. The role played by events such as whole-genome and segmental duplications followed by genome fractionation in shaping genomic landsc...

Full description

Saved in:
Bibliographic Details
Published in:Development genes and evolution 2018-12, Vol.228 (6), p.227-242
Main Authors: Joshi, Gauri, Chauhan, Chetan, Das, Sandip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The availability of a large number of whole-genome sequences allows comparative genomic analysis to reveal and understand evolution of regulatory regions and elements. The role played by events such as whole-genome and segmental duplications followed by genome fractionation in shaping genomic landscape and in expansion of gene families is crucial toward developing insights into evolutionary trends and consequences such as sequence and functional diversification. Members of Brassicaceae are known to have experienced several rounds of whole-genome duplication (WGD) that have been termed as paleopolyploidy, mesopolyploidy, and neopolyploidy. Such repeated events led to the creation and expansion of a large number of gene families. MIR319 is reported to be one of the most ancient and conserved plant MIRNA families and plays a role in growth and development including leaf development, seedling development, and embryo patterning. We have previously reported functional diversification of members of miR319 in Brassica oleracea affecting leaf architecture; however, the evolutionary history of the MIR319 gene family across Brassicaceae remains unknown and requires investigation. We therefore identified homologous and homeologous segments of ca. 100 kb, with or without MIR319 , performed comparative synteny analysis and genome fractionation studies. We detected variable rates of gene retention across members of Brassicaceae when genomic blocks of MIR319a , MIR319b , and MIR319c were compared either between themselves or against Arabidopsis thaliana genome which was taken as the base genome. The highest levels of shared genes were found between A. thaliana and Capsella rubella in both MIR319b - and MIR319c -containing genomic segments, and with the closest species of A. thaliana , A. lyrata , only in MIR319a -containing segment. Synteny analysis across 12 genomes (with 30 sub-genomes) revealed MIR319c to be the most conserved MIRNA loci (present in 27 genomes/sub-genomes) followed by MIR319a (present in 23 genomes/sub-genomes); MIR319b was found to be frequently lost (present in 20 genomes/sub-genomes) and thus is under least selection pressure for retention. Genome fractionation revealed extensive and differential loss of MIRNA homeologous loci and flanking genes from various sub-genomes of Brassica species that is in accordance with their older history of polyploidy when compared to Camelina sativa, a recent neopolyploid, where the effect of genome fractionation was
ISSN:0949-944X
1432-041X
DOI:10.1007/s00427-018-0620-0