Loading…
Monopole-Induced Emergent Electric Fields in Ferromagnetic Nanowires
We predict that complete magnetization reversal in simple metallic ferromagnetic nanoparticles is directly linked to the pair creation of topological point defects in the form of hedgehog-antihedgehog pairs. These dynamical point defects move at exceptionally high speeds in excess of 1500 m/s, fast...
Saved in:
Published in: | Physical review letters 2018-08, Vol.121 (9), p.097202-097202, Article 097202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We predict that complete magnetization reversal in simple metallic ferromagnetic nanoparticles is directly linked to the pair creation of topological point defects in the form of hedgehog-antihedgehog pairs. These dynamical point defects move at exceptionally high speeds in excess of 1500 m/s, faster than any other known magnetic object. Their rapid motion generates unprecedented solenoidal emergent fields on the order of megavolts per meter, in analogy to the magnetic field of a moving electric charge, providing a striking example that a moving hedgehog constitutes an emergent magnetic monopole. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.097202 |