Loading…
Acoustothermal Atomization of Water Nanofilms
We report nonequilibrium molecular simulations of the vibration-induced heating of nanoscale-thick water layers on a metal substrate. In addition to experimentally confirmed acoustothermal evaporation, we observe hitherto unmapped nucleate and film boiling regimes, accompanied by the generation of u...
Saved in:
Published in: | Physical review letters 2018-09, Vol.121 (10), p.104502-104502, Article 104502 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report nonequilibrium molecular simulations of the vibration-induced heating of nanoscale-thick water layers on a metal substrate. In addition to experimentally confirmed acoustothermal evaporation, we observe hitherto unmapped nucleate and film boiling regimes, accompanied by the generation of unprecedented heat fluxes [∼O(10^{9}) W/m^{2}]. We develop a universal scaling parameter to classify the heat-transfer regimes and to predict the thickness of the residual nonevaporating liquid layer. The results find broad application to systems involving drying, coatings, and sprays. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.104502 |