Loading…
Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand
The human leukocyte antigen (HLA) genes are highly variable and are known to play an important role in disease outcomes, including infectious diseases. Prior knowledge of HLA polymorphisms in a population usually forms the basis for an effective case-control study design. As a prelude to future dise...
Saved in:
Published in: | Human immunology 2018-11, Vol.79 (11), p.773-780 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13 |
container_end_page | 780 |
container_issue | 11 |
container_start_page | 773 |
container_title | Human immunology |
container_volume | 79 |
creator | Geretz, Aviva Ehrenberg, Philip K. Bouckenooghe, Alain Fernández Viña, Marcelo A. Michael, Nelson L. Chansinghakule, Danaya Limkittikul, Kriengsak Thomas, Rasmi |
description | The human leukocyte antigen (HLA) genes are highly variable and are known to play an important role in disease outcomes, including infectious diseases. Prior knowledge of HLA polymorphisms in a population usually forms the basis for an effective case-control study design. As a prelude to future disease association analyses, we report HLA class I and II diversity in 334 unrelated donors from a Dengue vaccine efficacy trial conducted in Thailand. Long-range PCR amplification of six HLA loci was performed on DNA extracted from saliva samples. HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1 were genotyped using a next-generation sequencing method presented at the 17th International HLA and Immunogenetics Workshop. In total, we identified 201 HLA alleles, including 35 HLA-A, 57 HLA-B, 28 HLA-C, 24 HLA-DPB1, 21 HLA-DQB1 and 36 HLA-DRB1 alleles. Very common HLA alleles with frequencies greater than 10 percent were A∗11:01:01, A∗33:03:01, A∗24:02:01, B∗46:01:01, C∗07:02:01, C∗01:02:01, C∗08:01:01, DPB1∗05:01:01, DPB1∗13:01:01, DPB1∗04:01:01, DPB1∗02:01:02, DQB1∗03:01:01, DQB1∗05:02:01, DQB1∗03:03:02, DRB1∗12:02:01, DRB1∗09:01:02, and DRB1∗15:02:01. A novel HLA allele, B∗15:450, had a non-synonymous substitution and occurred in more than one donor. Population-based full-length NGS HLA typing is more conclusive and provides a sound foundation for exploring disease association in a given population. |
doi_str_mv | 10.1016/j.humimm.2018.09.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111747854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0198885918308607</els_id><sourcerecordid>2111747854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVJaLZp36AUHXOxOyPLlnQphJA0Cwu5pLeC8MrjXS22lUp2SN--WjbNMae5fDP_Px9jXxFKBGy-H8r9MvpxLAWgLsGUAPUHtkKtTIHYNGdsBWh0oXVtLtinlA4AoEDJj-yiAiErbWDFft8tw1AMNO3mPZ_oZS52NFFsZx8mnujPQpPz046Hnt9vrrkb2pT4mrdTx9drfmQT9xNvuQv7EGfexzDyx33rh4x8Zud9OyT68jov2a-728eb-2Lz8HN9c70pnAQ9Fw2JXlG1Nb1S5La1JAVaiEZjpSpZU6tQoNlWSDU6bDppnIOmRtE5J_oOq0t2dbr7FENunGY7-uRoyB0oLMkKRFRS6VpmVJ5QF0NKkXr7FP3Yxr8WwR692oM9ebVHrxaMzV7z2rfXhGU7Uve29F9kBn6cAMp_PnuKNjmf3VHnI7nZdsG_n_APk8yJ8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111747854</pqid></control><display><type>article</type><title>Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand</title><source>Elsevier</source><creator>Geretz, Aviva ; Ehrenberg, Philip K. ; Bouckenooghe, Alain ; Fernández Viña, Marcelo A. ; Michael, Nelson L. ; Chansinghakule, Danaya ; Limkittikul, Kriengsak ; Thomas, Rasmi</creator><creatorcontrib>Geretz, Aviva ; Ehrenberg, Philip K. ; Bouckenooghe, Alain ; Fernández Viña, Marcelo A. ; Michael, Nelson L. ; Chansinghakule, Danaya ; Limkittikul, Kriengsak ; Thomas, Rasmi</creatorcontrib><description>The human leukocyte antigen (HLA) genes are highly variable and are known to play an important role in disease outcomes, including infectious diseases. Prior knowledge of HLA polymorphisms in a population usually forms the basis for an effective case-control study design. As a prelude to future disease association analyses, we report HLA class I and II diversity in 334 unrelated donors from a Dengue vaccine efficacy trial conducted in Thailand. Long-range PCR amplification of six HLA loci was performed on DNA extracted from saliva samples. HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1 were genotyped using a next-generation sequencing method presented at the 17th International HLA and Immunogenetics Workshop. In total, we identified 201 HLA alleles, including 35 HLA-A, 57 HLA-B, 28 HLA-C, 24 HLA-DPB1, 21 HLA-DQB1 and 36 HLA-DRB1 alleles. Very common HLA alleles with frequencies greater than 10 percent were A∗11:01:01, A∗33:03:01, A∗24:02:01, B∗46:01:01, C∗07:02:01, C∗01:02:01, C∗08:01:01, DPB1∗05:01:01, DPB1∗13:01:01, DPB1∗04:01:01, DPB1∗02:01:02, DQB1∗03:01:01, DQB1∗05:02:01, DQB1∗03:03:02, DRB1∗12:02:01, DRB1∗09:01:02, and DRB1∗15:02:01. A novel HLA allele, B∗15:450, had a non-synonymous substitution and occurred in more than one donor. Population-based full-length NGS HLA typing is more conclusive and provides a sound foundation for exploring disease association in a given population.</description><identifier>ISSN: 0198-8859</identifier><identifier>EISSN: 1879-1166</identifier><identifier>DOI: 10.1016/j.humimm.2018.09.005</identifier><identifier>PMID: 30243890</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Computational Biology - methods ; Dengue ; Gene Frequency ; Genes, MHC Class I ; Genes, MHC Class II ; Genotype ; High-Throughput Nucleotide Sequencing ; Histocompatibility Testing ; HLA alleles ; Humans ; Illumina ; Multilocus Sequence Typing ; Next-generation sequencing ; Quantitative Trait Loci ; Thailand</subject><ispartof>Human immunology, 2018-11, Vol.79 (11), p.773-780</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13</citedby><cites>FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30243890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geretz, Aviva</creatorcontrib><creatorcontrib>Ehrenberg, Philip K.</creatorcontrib><creatorcontrib>Bouckenooghe, Alain</creatorcontrib><creatorcontrib>Fernández Viña, Marcelo A.</creatorcontrib><creatorcontrib>Michael, Nelson L.</creatorcontrib><creatorcontrib>Chansinghakule, Danaya</creatorcontrib><creatorcontrib>Limkittikul, Kriengsak</creatorcontrib><creatorcontrib>Thomas, Rasmi</creatorcontrib><title>Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand</title><title>Human immunology</title><addtitle>Hum Immunol</addtitle><description>The human leukocyte antigen (HLA) genes are highly variable and are known to play an important role in disease outcomes, including infectious diseases. Prior knowledge of HLA polymorphisms in a population usually forms the basis for an effective case-control study design. As a prelude to future disease association analyses, we report HLA class I and II diversity in 334 unrelated donors from a Dengue vaccine efficacy trial conducted in Thailand. Long-range PCR amplification of six HLA loci was performed on DNA extracted from saliva samples. HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1 were genotyped using a next-generation sequencing method presented at the 17th International HLA and Immunogenetics Workshop. In total, we identified 201 HLA alleles, including 35 HLA-A, 57 HLA-B, 28 HLA-C, 24 HLA-DPB1, 21 HLA-DQB1 and 36 HLA-DRB1 alleles. Very common HLA alleles with frequencies greater than 10 percent were A∗11:01:01, A∗33:03:01, A∗24:02:01, B∗46:01:01, C∗07:02:01, C∗01:02:01, C∗08:01:01, DPB1∗05:01:01, DPB1∗13:01:01, DPB1∗04:01:01, DPB1∗02:01:02, DQB1∗03:01:01, DQB1∗05:02:01, DQB1∗03:03:02, DRB1∗12:02:01, DRB1∗09:01:02, and DRB1∗15:02:01. A novel HLA allele, B∗15:450, had a non-synonymous substitution and occurred in more than one donor. Population-based full-length NGS HLA typing is more conclusive and provides a sound foundation for exploring disease association in a given population.</description><subject>Alleles</subject><subject>Computational Biology - methods</subject><subject>Dengue</subject><subject>Gene Frequency</subject><subject>Genes, MHC Class I</subject><subject>Genes, MHC Class II</subject><subject>Genotype</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Histocompatibility Testing</subject><subject>HLA alleles</subject><subject>Humans</subject><subject>Illumina</subject><subject>Multilocus Sequence Typing</subject><subject>Next-generation sequencing</subject><subject>Quantitative Trait Loci</subject><subject>Thailand</subject><issn>0198-8859</issn><issn>1879-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVJaLZp36AUHXOxOyPLlnQphJA0Cwu5pLeC8MrjXS22lUp2SN--WjbNMae5fDP_Px9jXxFKBGy-H8r9MvpxLAWgLsGUAPUHtkKtTIHYNGdsBWh0oXVtLtinlA4AoEDJj-yiAiErbWDFft8tw1AMNO3mPZ_oZS52NFFsZx8mnujPQpPz046Hnt9vrrkb2pT4mrdTx9drfmQT9xNvuQv7EGfexzDyx33rh4x8Zud9OyT68jov2a-728eb-2Lz8HN9c70pnAQ9Fw2JXlG1Nb1S5La1JAVaiEZjpSpZU6tQoNlWSDU6bDppnIOmRtE5J_oOq0t2dbr7FENunGY7-uRoyB0oLMkKRFRS6VpmVJ5QF0NKkXr7FP3Yxr8WwR692oM9ebVHrxaMzV7z2rfXhGU7Uve29F9kBn6cAMp_PnuKNjmf3VHnI7nZdsG_n_APk8yJ8w</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Geretz, Aviva</creator><creator>Ehrenberg, Philip K.</creator><creator>Bouckenooghe, Alain</creator><creator>Fernández Viña, Marcelo A.</creator><creator>Michael, Nelson L.</creator><creator>Chansinghakule, Danaya</creator><creator>Limkittikul, Kriengsak</creator><creator>Thomas, Rasmi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201811</creationdate><title>Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand</title><author>Geretz, Aviva ; Ehrenberg, Philip K. ; Bouckenooghe, Alain ; Fernández Viña, Marcelo A. ; Michael, Nelson L. ; Chansinghakule, Danaya ; Limkittikul, Kriengsak ; Thomas, Rasmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alleles</topic><topic>Computational Biology - methods</topic><topic>Dengue</topic><topic>Gene Frequency</topic><topic>Genes, MHC Class I</topic><topic>Genes, MHC Class II</topic><topic>Genotype</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Histocompatibility Testing</topic><topic>HLA alleles</topic><topic>Humans</topic><topic>Illumina</topic><topic>Multilocus Sequence Typing</topic><topic>Next-generation sequencing</topic><topic>Quantitative Trait Loci</topic><topic>Thailand</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geretz, Aviva</creatorcontrib><creatorcontrib>Ehrenberg, Philip K.</creatorcontrib><creatorcontrib>Bouckenooghe, Alain</creatorcontrib><creatorcontrib>Fernández Viña, Marcelo A.</creatorcontrib><creatorcontrib>Michael, Nelson L.</creatorcontrib><creatorcontrib>Chansinghakule, Danaya</creatorcontrib><creatorcontrib>Limkittikul, Kriengsak</creatorcontrib><creatorcontrib>Thomas, Rasmi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Human immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geretz, Aviva</au><au>Ehrenberg, Philip K.</au><au>Bouckenooghe, Alain</au><au>Fernández Viña, Marcelo A.</au><au>Michael, Nelson L.</au><au>Chansinghakule, Danaya</au><au>Limkittikul, Kriengsak</au><au>Thomas, Rasmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand</atitle><jtitle>Human immunology</jtitle><addtitle>Hum Immunol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>79</volume><issue>11</issue><spage>773</spage><epage>780</epage><pages>773-780</pages><issn>0198-8859</issn><eissn>1879-1166</eissn><abstract>The human leukocyte antigen (HLA) genes are highly variable and are known to play an important role in disease outcomes, including infectious diseases. Prior knowledge of HLA polymorphisms in a population usually forms the basis for an effective case-control study design. As a prelude to future disease association analyses, we report HLA class I and II diversity in 334 unrelated donors from a Dengue vaccine efficacy trial conducted in Thailand. Long-range PCR amplification of six HLA loci was performed on DNA extracted from saliva samples. HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1 were genotyped using a next-generation sequencing method presented at the 17th International HLA and Immunogenetics Workshop. In total, we identified 201 HLA alleles, including 35 HLA-A, 57 HLA-B, 28 HLA-C, 24 HLA-DPB1, 21 HLA-DQB1 and 36 HLA-DRB1 alleles. Very common HLA alleles with frequencies greater than 10 percent were A∗11:01:01, A∗33:03:01, A∗24:02:01, B∗46:01:01, C∗07:02:01, C∗01:02:01, C∗08:01:01, DPB1∗05:01:01, DPB1∗13:01:01, DPB1∗04:01:01, DPB1∗02:01:02, DQB1∗03:01:01, DQB1∗05:02:01, DQB1∗03:03:02, DRB1∗12:02:01, DRB1∗09:01:02, and DRB1∗15:02:01. A novel HLA allele, B∗15:450, had a non-synonymous substitution and occurred in more than one donor. Population-based full-length NGS HLA typing is more conclusive and provides a sound foundation for exploring disease association in a given population.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30243890</pmid><doi>10.1016/j.humimm.2018.09.005</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0198-8859 |
ispartof | Human immunology, 2018-11, Vol.79 (11), p.773-780 |
issn | 0198-8859 1879-1166 |
language | eng |
recordid | cdi_proquest_miscellaneous_2111747854 |
source | Elsevier |
subjects | Alleles Computational Biology - methods Dengue Gene Frequency Genes, MHC Class I Genes, MHC Class II Genotype High-Throughput Nucleotide Sequencing Histocompatibility Testing HLA alleles Humans Illumina Multilocus Sequence Typing Next-generation sequencing Quantitative Trait Loci Thailand |
title | Full-length next-generation sequencing of HLA class I and II genes in a cohort from Thailand |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-length%20next-generation%20sequencing%20of%20HLA%20class%20I%20and%20II%20genes%20in%20a%20cohort%20from%20Thailand&rft.jtitle=Human%20immunology&rft.au=Geretz,%20Aviva&rft.date=2018-11&rft.volume=79&rft.issue=11&rft.spage=773&rft.epage=780&rft.pages=773-780&rft.issn=0198-8859&rft.eissn=1879-1166&rft_id=info:doi/10.1016/j.humimm.2018.09.005&rft_dat=%3Cproquest_cross%3E2111747854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-6e2f7e3b9f77ecb54e7082268137345ea71219b31e51c16d49cc06512dcc2fd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111747854&rft_id=info:pmid/30243890&rfr_iscdi=true |