Loading…
The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy
The electrocardiogram (ECG) reveals that heart chamber activation and repolarization are much faster in mammals and birds compared to ectothermic vertebrates of similar size. Temperature, however, affects electrophysiology of the heart and most data from ectotherms are determined at body temperature...
Saved in:
Published in: | Progress in biophysics and molecular biology 2019-07, Vol.144, p.16-29 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253 |
container_end_page | 29 |
container_issue | |
container_start_page | 16 |
container_title | Progress in biophysics and molecular biology |
container_volume | 144 |
creator | Boukens, Bastiaan J.D. Kristensen, Ditte L. Filogonio, Renato Carreira, Laura B.T. Sartori, Marina R. Abe, Augusto S. Currie, Shannon Joyce, William Conner, Justin Opthof, Tobias Crossley, Dane A. Wang, Tobias Jensen, Bjarke |
description | The electrocardiogram (ECG) reveals that heart chamber activation and repolarization are much faster in mammals and birds compared to ectothermic vertebrates of similar size. Temperature, however, affects electrophysiology of the heart and most data from ectotherms are determined at body temperatures lower than those of mammals and birds. The present manuscript is a review of the effects of temperature on intervals in the ECG of ectothermic and endothermic vertebrates rather than a hypothesis-testing original research article. However, the conclusions are supported by the inclusion of original data (Iguana iguana, N = 4; Python regius, N = 5; Alligator mississippiensis, N = 4). Most comparisons were of animals of approximately 1 kg. Compared to mammals and birds, the reptiles at 35–37 °C had 4 fold lower heart rates, 2 fold slower atrial and ventricular conduction (longer P- and QRS-wave durations), and 4 fold longer PR intervals (atrioventricular delay) and QT intervals (total ventricular repolarization). We conclude that the faster chamber activation in endotherms cannot be explained by temperature alone. Based on histology, we show that endotherms have a more compact myocardial architecture. In mammals, disorganization of the compact wall by fibrosis associates with conduction slowing and we suggest the compact tissue architecture allows for faster chamber activation. The short cardiac cycle that characterizes mammals and birds, however, is predominantly accommodated by shortening of the atrioventricular delay and the QT interval, which is so long in a 1 kg iguana that it compares to that of an elephant. |
doi_str_mv | 10.1016/j.pbiomolbio.2018.08.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111748546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610718300221</els_id><sourcerecordid>2111748546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253</originalsourceid><addsrcrecordid>eNqFkF9L7DAQxYNc0fXPV5A8-tJ1krRN65tXvCoIvij4FtJk4mZpmzXpLvjtb5Zd9VEYZhg4M4fzI4QymDNg9dVyvup8GEKf-5wDa-aQC6oDMmONFAWTgv8hMwDZFjUDeUxOUloCAGeyPiLHAngpqrKZkbeXBVLs0UwxGB2tD-9RDzQ4usE4YRf1hOma3m1Cv558GHX8pGahx3dM1MUw0HwZpgXG4ZNOgeJo99sZOXS6T3i-n6fk9d_dy-1D8fR8_3h781QYIcupaNuurLrWOdlhzaXkxgmwZefqtrPCWJBgZYuOmda1TDhXy5JLjY3lVmteiVNyufu7iuFjjWlSg08G-16PGNZJccaYLJuqrLO02UlNDClFdGoV_ZATKQZqy1Ut1Q9XteWqIBdsXS72LutuQPt9-AUyC_7uBJizbjxGlYzH0aD1MSNSNvjfXf4DKrCRMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111748546</pqid></control><display><type>article</type><title>The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy</title><source>ScienceDirect Journals</source><creator>Boukens, Bastiaan J.D. ; Kristensen, Ditte L. ; Filogonio, Renato ; Carreira, Laura B.T. ; Sartori, Marina R. ; Abe, Augusto S. ; Currie, Shannon ; Joyce, William ; Conner, Justin ; Opthof, Tobias ; Crossley, Dane A. ; Wang, Tobias ; Jensen, Bjarke</creator><creatorcontrib>Boukens, Bastiaan J.D. ; Kristensen, Ditte L. ; Filogonio, Renato ; Carreira, Laura B.T. ; Sartori, Marina R. ; Abe, Augusto S. ; Currie, Shannon ; Joyce, William ; Conner, Justin ; Opthof, Tobias ; Crossley, Dane A. ; Wang, Tobias ; Jensen, Bjarke</creatorcontrib><description>The electrocardiogram (ECG) reveals that heart chamber activation and repolarization are much faster in mammals and birds compared to ectothermic vertebrates of similar size. Temperature, however, affects electrophysiology of the heart and most data from ectotherms are determined at body temperatures lower than those of mammals and birds. The present manuscript is a review of the effects of temperature on intervals in the ECG of ectothermic and endothermic vertebrates rather than a hypothesis-testing original research article. However, the conclusions are supported by the inclusion of original data (Iguana iguana, N = 4; Python regius, N = 5; Alligator mississippiensis, N = 4). Most comparisons were of animals of approximately 1 kg. Compared to mammals and birds, the reptiles at 35–37 °C had 4 fold lower heart rates, 2 fold slower atrial and ventricular conduction (longer P- and QRS-wave durations), and 4 fold longer PR intervals (atrioventricular delay) and QT intervals (total ventricular repolarization). We conclude that the faster chamber activation in endotherms cannot be explained by temperature alone. Based on histology, we show that endotherms have a more compact myocardial architecture. In mammals, disorganization of the compact wall by fibrosis associates with conduction slowing and we suggest the compact tissue architecture allows for faster chamber activation. The short cardiac cycle that characterizes mammals and birds, however, is predominantly accommodated by shortening of the atrioventricular delay and the QT interval, which is so long in a 1 kg iguana that it compares to that of an elephant.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2018.08.005</identifier><identifier>PMID: 30243548</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biological Evolution ; Body Temperature Regulation ; Electrocardiography ; Heart - physiology ; Humans ; Vertebrates - physiology</subject><ispartof>Progress in biophysics and molecular biology, 2019-07, Vol.144, p.16-29</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253</citedby><cites>FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253</cites><orcidid>0000-0001-5956-0481 ; 0000-0002-7750-8035 ; 0000-0002-5436-7102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30243548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boukens, Bastiaan J.D.</creatorcontrib><creatorcontrib>Kristensen, Ditte L.</creatorcontrib><creatorcontrib>Filogonio, Renato</creatorcontrib><creatorcontrib>Carreira, Laura B.T.</creatorcontrib><creatorcontrib>Sartori, Marina R.</creatorcontrib><creatorcontrib>Abe, Augusto S.</creatorcontrib><creatorcontrib>Currie, Shannon</creatorcontrib><creatorcontrib>Joyce, William</creatorcontrib><creatorcontrib>Conner, Justin</creatorcontrib><creatorcontrib>Opthof, Tobias</creatorcontrib><creatorcontrib>Crossley, Dane A.</creatorcontrib><creatorcontrib>Wang, Tobias</creatorcontrib><creatorcontrib>Jensen, Bjarke</creatorcontrib><title>The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>The electrocardiogram (ECG) reveals that heart chamber activation and repolarization are much faster in mammals and birds compared to ectothermic vertebrates of similar size. Temperature, however, affects electrophysiology of the heart and most data from ectotherms are determined at body temperatures lower than those of mammals and birds. The present manuscript is a review of the effects of temperature on intervals in the ECG of ectothermic and endothermic vertebrates rather than a hypothesis-testing original research article. However, the conclusions are supported by the inclusion of original data (Iguana iguana, N = 4; Python regius, N = 5; Alligator mississippiensis, N = 4). Most comparisons were of animals of approximately 1 kg. Compared to mammals and birds, the reptiles at 35–37 °C had 4 fold lower heart rates, 2 fold slower atrial and ventricular conduction (longer P- and QRS-wave durations), and 4 fold longer PR intervals (atrioventricular delay) and QT intervals (total ventricular repolarization). We conclude that the faster chamber activation in endotherms cannot be explained by temperature alone. Based on histology, we show that endotherms have a more compact myocardial architecture. In mammals, disorganization of the compact wall by fibrosis associates with conduction slowing and we suggest the compact tissue architecture allows for faster chamber activation. The short cardiac cycle that characterizes mammals and birds, however, is predominantly accommodated by shortening of the atrioventricular delay and the QT interval, which is so long in a 1 kg iguana that it compares to that of an elephant.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Body Temperature Regulation</subject><subject>Electrocardiography</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Vertebrates - physiology</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkF9L7DAQxYNc0fXPV5A8-tJ1krRN65tXvCoIvij4FtJk4mZpmzXpLvjtb5Zd9VEYZhg4M4fzI4QymDNg9dVyvup8GEKf-5wDa-aQC6oDMmONFAWTgv8hMwDZFjUDeUxOUloCAGeyPiLHAngpqrKZkbeXBVLs0UwxGB2tD-9RDzQ4usE4YRf1hOma3m1Cv558GHX8pGahx3dM1MUw0HwZpgXG4ZNOgeJo99sZOXS6T3i-n6fk9d_dy-1D8fR8_3h781QYIcupaNuurLrWOdlhzaXkxgmwZefqtrPCWJBgZYuOmda1TDhXy5JLjY3lVmteiVNyufu7iuFjjWlSg08G-16PGNZJccaYLJuqrLO02UlNDClFdGoV_ZATKQZqy1Ut1Q9XteWqIBdsXS72LutuQPt9-AUyC_7uBJizbjxGlYzH0aD1MSNSNvjfXf4DKrCRMQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Boukens, Bastiaan J.D.</creator><creator>Kristensen, Ditte L.</creator><creator>Filogonio, Renato</creator><creator>Carreira, Laura B.T.</creator><creator>Sartori, Marina R.</creator><creator>Abe, Augusto S.</creator><creator>Currie, Shannon</creator><creator>Joyce, William</creator><creator>Conner, Justin</creator><creator>Opthof, Tobias</creator><creator>Crossley, Dane A.</creator><creator>Wang, Tobias</creator><creator>Jensen, Bjarke</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5956-0481</orcidid><orcidid>https://orcid.org/0000-0002-7750-8035</orcidid><orcidid>https://orcid.org/0000-0002-5436-7102</orcidid></search><sort><creationdate>201907</creationdate><title>The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy</title><author>Boukens, Bastiaan J.D. ; Kristensen, Ditte L. ; Filogonio, Renato ; Carreira, Laura B.T. ; Sartori, Marina R. ; Abe, Augusto S. ; Currie, Shannon ; Joyce, William ; Conner, Justin ; Opthof, Tobias ; Crossley, Dane A. ; Wang, Tobias ; Jensen, Bjarke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Body Temperature Regulation</topic><topic>Electrocardiography</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Vertebrates - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukens, Bastiaan J.D.</creatorcontrib><creatorcontrib>Kristensen, Ditte L.</creatorcontrib><creatorcontrib>Filogonio, Renato</creatorcontrib><creatorcontrib>Carreira, Laura B.T.</creatorcontrib><creatorcontrib>Sartori, Marina R.</creatorcontrib><creatorcontrib>Abe, Augusto S.</creatorcontrib><creatorcontrib>Currie, Shannon</creatorcontrib><creatorcontrib>Joyce, William</creatorcontrib><creatorcontrib>Conner, Justin</creatorcontrib><creatorcontrib>Opthof, Tobias</creatorcontrib><creatorcontrib>Crossley, Dane A.</creatorcontrib><creatorcontrib>Wang, Tobias</creatorcontrib><creatorcontrib>Jensen, Bjarke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukens, Bastiaan J.D.</au><au>Kristensen, Ditte L.</au><au>Filogonio, Renato</au><au>Carreira, Laura B.T.</au><au>Sartori, Marina R.</au><au>Abe, Augusto S.</au><au>Currie, Shannon</au><au>Joyce, William</au><au>Conner, Justin</au><au>Opthof, Tobias</au><au>Crossley, Dane A.</au><au>Wang, Tobias</au><au>Jensen, Bjarke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2019-07</date><risdate>2019</risdate><volume>144</volume><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>The electrocardiogram (ECG) reveals that heart chamber activation and repolarization are much faster in mammals and birds compared to ectothermic vertebrates of similar size. Temperature, however, affects electrophysiology of the heart and most data from ectotherms are determined at body temperatures lower than those of mammals and birds. The present manuscript is a review of the effects of temperature on intervals in the ECG of ectothermic and endothermic vertebrates rather than a hypothesis-testing original research article. However, the conclusions are supported by the inclusion of original data (Iguana iguana, N = 4; Python regius, N = 5; Alligator mississippiensis, N = 4). Most comparisons were of animals of approximately 1 kg. Compared to mammals and birds, the reptiles at 35–37 °C had 4 fold lower heart rates, 2 fold slower atrial and ventricular conduction (longer P- and QRS-wave durations), and 4 fold longer PR intervals (atrioventricular delay) and QT intervals (total ventricular repolarization). We conclude that the faster chamber activation in endotherms cannot be explained by temperature alone. Based on histology, we show that endotherms have a more compact myocardial architecture. In mammals, disorganization of the compact wall by fibrosis associates with conduction slowing and we suggest the compact tissue architecture allows for faster chamber activation. The short cardiac cycle that characterizes mammals and birds, however, is predominantly accommodated by shortening of the atrioventricular delay and the QT interval, which is so long in a 1 kg iguana that it compares to that of an elephant.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30243548</pmid><doi>10.1016/j.pbiomolbio.2018.08.005</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5956-0481</orcidid><orcidid>https://orcid.org/0000-0002-7750-8035</orcidid><orcidid>https://orcid.org/0000-0002-5436-7102</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2019-07, Vol.144, p.16-29 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_proquest_miscellaneous_2111748546 |
source | ScienceDirect Journals |
subjects | Animals Biological Evolution Body Temperature Regulation Electrocardiography Heart - physiology Humans Vertebrates - physiology |
title | The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electrocardiogram%20of%20vertebrates:%20Evolutionary%20changes%20from%20ectothermy%20to%20endothermy&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Boukens,%20Bastiaan%20J.D.&rft.date=2019-07&rft.volume=144&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2018.08.005&rft_dat=%3Cproquest_cross%3E2111748546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-99b45b9ff7be62772cf30d4bf69bd3cd070d79ef1c9f913ff67427ae8d2daa253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111748546&rft_id=info:pmid/30243548&rfr_iscdi=true |