Loading…

Testosterone represses urinary excretion of the alpha-tocopherol metabolite alpha-carboxymethylhydroxychroman in rats

In rats, plasma and tissue concentrations of α-tocopherol, a predominant form of vitamin E in mammals, are known to differ between the sexes. In order to examine sex differences in α-tocopherol metabolism, we investigated urinary excretion of the α-tocopherol metabolite α-carboxymethylhydroxychroman...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of nutritional biochemistry 2018-12, Vol.62, p.59-64
Main Authors: Fujita, Naoko, Takenaka, Asako
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In rats, plasma and tissue concentrations of α-tocopherol, a predominant form of vitamin E in mammals, are known to differ between the sexes. In order to examine sex differences in α-tocopherol metabolism, we investigated urinary excretion of the α-tocopherol metabolite α-carboxymethylhydroxychroman (α-CEHC) using Wistar rats. First, we measured α-CEHC in urine of 9-week-old male and female rats in basal and α-tocopherol-administered conditions. We observed that female rats excrete significantly more α-CEHC than male rats via urine. This sex difference was observed in matured 9-week-old rats but not in premature 3-week-old rats, suggesting that the difference may relate to sex hormones. In order to confirm this, we examined the effect of ovariectomy and orchiectomy on female and male rats, respectively. The results of castration clearly demonstrated that orchiectomy enhanced urinary excretion of α-CEHC, supporting the hypothesis that testosterone repressed α-tocopherol metabolism. We then administered testosterone propionate to orchiectomized rats and observed down-regulation of α-CEHC excretion. Taken together, these results indicate that testosterone represses the metabolism and urinary excretion of α-tocopherol in rats. This is the first report to show a sex-dependent difference in urinary excretion rate of an α-tocopherol metabolite and contributes to the understanding of vitamin E metabolism.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2018.08.006