Loading…
Forecasting-Aided State Estimation-Part I: Panorama
The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important r...
Saved in:
Published in: | IEEE transactions on power systems 2009-11, Vol.24 (4), p.1667-1677 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3 |
container_end_page | 1677 |
container_issue | 4 |
container_start_page | 1667 |
container_title | IEEE transactions on power systems |
container_volume | 24 |
creator | Brown Do Coutto Filho, M. de Souza, J.C.S. |
description | The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil. |
doi_str_mv | 10.1109/TPWRS.2009.2030295 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_21131897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5233865</ieee_id><sourcerecordid>867743142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKtfQC_Fg562TpLNn_EmpdVCwWIrHkM2m8qWdrcm24Pf3tQWDx70MgMzv_dg5hFySaFPKeDdfPr2MuszAEyFA0NxRDpUCJ2BVHhMOqC1yDQKOCVnMS4BQKZFh_BRE7yzsa3q9-yhKn3Zm7W29b1hGq1tWzV1NrWh7Y3ve1NbN8Gu7Tk5WdhV9BeH3iWvo-F88JRNnh_Hg4dJ5gTwNpMMGQXhCiZzmgOXhbMCAUsvXamwAO844-hpLlUqVOuFYlBAwRmgoJZ3ye3edxOaj62PrVlX0fnVyta-2UajpVI5pzlL5M2fJM9RCxTyX5BRyqlGlcDrX-Cy2YY6nWu00ApR0p0b20MuNDEGvzCbkJ4WPg0Fs8vFfOdidrmYQy5JdLUXVd77H4FgnGsp-BeHfoXT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858799616</pqid></control><display><type>article</type><title>Forecasting-Aided State Estimation-Part I: Panorama</title><source>IEEE Xplore (Online service)</source><creator>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</creator><creatorcontrib>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</creatorcontrib><description>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2009.2030295</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data analysis ; Filtering ; Observability ; Power measurement ; Power system measurements ; Random processes ; Redundancy ; State estimation ; state forecasting ; Technological innovation</subject><ispartof>IEEE transactions on power systems, 2009-11, Vol.24 (4), p.1667-1677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</citedby><cites>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5233865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Brown Do Coutto Filho, M.</creatorcontrib><creatorcontrib>de Souza, J.C.S.</creatorcontrib><title>Forecasting-Aided State Estimation-Part I: Panorama</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</description><subject>Data analysis</subject><subject>Filtering</subject><subject>Observability</subject><subject>Power measurement</subject><subject>Power system measurements</subject><subject>Random processes</subject><subject>Redundancy</subject><subject>State estimation</subject><subject>state forecasting</subject><subject>Technological innovation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWKtfQC_Fg562TpLNn_EmpdVCwWIrHkM2m8qWdrcm24Pf3tQWDx70MgMzv_dg5hFySaFPKeDdfPr2MuszAEyFA0NxRDpUCJ2BVHhMOqC1yDQKOCVnMS4BQKZFh_BRE7yzsa3q9-yhKn3Zm7W29b1hGq1tWzV1NrWh7Y3ve1NbN8Gu7Tk5WdhV9BeH3iWvo-F88JRNnh_Hg4dJ5gTwNpMMGQXhCiZzmgOXhbMCAUsvXamwAO844-hpLlUqVOuFYlBAwRmgoJZ3ye3edxOaj62PrVlX0fnVyta-2UajpVI5pzlL5M2fJM9RCxTyX5BRyqlGlcDrX-Cy2YY6nWu00ApR0p0b20MuNDEGvzCbkJ4WPg0Fs8vFfOdidrmYQy5JdLUXVd77H4FgnGsp-BeHfoXT</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Brown Do Coutto Filho, M.</creator><creator>de Souza, J.C.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>F28</scope></search><sort><creationdate>20091101</creationdate><title>Forecasting-Aided State Estimation-Part I: Panorama</title><author>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data analysis</topic><topic>Filtering</topic><topic>Observability</topic><topic>Power measurement</topic><topic>Power system measurements</topic><topic>Random processes</topic><topic>Redundancy</topic><topic>State estimation</topic><topic>state forecasting</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown Do Coutto Filho, M.</creatorcontrib><creatorcontrib>de Souza, J.C.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown Do Coutto Filho, M.</au><au>de Souza, J.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting-Aided State Estimation-Part I: Panorama</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>24</volume><issue>4</issue><spage>1667</spage><epage>1677</epage><pages>1667-1677</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2009.2030295</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2009-11, Vol.24 (4), p.1667-1677 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_miscellaneous_21131897 |
source | IEEE Xplore (Online service) |
subjects | Data analysis Filtering Observability Power measurement Power system measurements Random processes Redundancy State estimation state forecasting Technological innovation |
title | Forecasting-Aided State Estimation-Part I: Panorama |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting-Aided%20State%20Estimation-Part%20I:%20Panorama&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Brown%20Do%20Coutto%20Filho,%20M.&rft.date=2009-11-01&rft.volume=24&rft.issue=4&rft.spage=1667&rft.epage=1677&rft.pages=1667-1677&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2009.2030295&rft_dat=%3Cproquest_ieee_%3E867743142%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858799616&rft_id=info:pmid/&rft_ieee_id=5233865&rfr_iscdi=true |