Loading…

Forecasting-Aided State Estimation-Part I: Panorama

The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2009-11, Vol.24 (4), p.1667-1677
Main Authors: Brown Do Coutto Filho, M., de Souza, J.C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3
cites cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3
container_end_page 1677
container_issue 4
container_start_page 1667
container_title IEEE transactions on power systems
container_volume 24
creator Brown Do Coutto Filho, M.
de Souza, J.C.S.
description The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.
doi_str_mv 10.1109/TPWRS.2009.2030295
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_21131897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5233865</ieee_id><sourcerecordid>867743142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKtfQC_Fg562TpLNn_EmpdVCwWIrHkM2m8qWdrcm24Pf3tQWDx70MgMzv_dg5hFySaFPKeDdfPr2MuszAEyFA0NxRDpUCJ2BVHhMOqC1yDQKOCVnMS4BQKZFh_BRE7yzsa3q9-yhKn3Zm7W29b1hGq1tWzV1NrWh7Y3ve1NbN8Gu7Tk5WdhV9BeH3iWvo-F88JRNnh_Hg4dJ5gTwNpMMGQXhCiZzmgOXhbMCAUsvXamwAO844-hpLlUqVOuFYlBAwRmgoJZ3ye3edxOaj62PrVlX0fnVyta-2UajpVI5pzlL5M2fJM9RCxTyX5BRyqlGlcDrX-Cy2YY6nWu00ApR0p0b20MuNDEGvzCbkJ4WPg0Fs8vFfOdidrmYQy5JdLUXVd77H4FgnGsp-BeHfoXT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858799616</pqid></control><display><type>article</type><title>Forecasting-Aided State Estimation-Part I: Panorama</title><source>IEEE Xplore (Online service)</source><creator>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</creator><creatorcontrib>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</creatorcontrib><description>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2009.2030295</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data analysis ; Filtering ; Observability ; Power measurement ; Power system measurements ; Random processes ; Redundancy ; State estimation ; state forecasting ; Technological innovation</subject><ispartof>IEEE transactions on power systems, 2009-11, Vol.24 (4), p.1667-1677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</citedby><cites>FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5233865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Brown Do Coutto Filho, M.</creatorcontrib><creatorcontrib>de Souza, J.C.S.</creatorcontrib><title>Forecasting-Aided State Estimation-Part I: Panorama</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</description><subject>Data analysis</subject><subject>Filtering</subject><subject>Observability</subject><subject>Power measurement</subject><subject>Power system measurements</subject><subject>Random processes</subject><subject>Redundancy</subject><subject>State estimation</subject><subject>state forecasting</subject><subject>Technological innovation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWKtfQC_Fg562TpLNn_EmpdVCwWIrHkM2m8qWdrcm24Pf3tQWDx70MgMzv_dg5hFySaFPKeDdfPr2MuszAEyFA0NxRDpUCJ2BVHhMOqC1yDQKOCVnMS4BQKZFh_BRE7yzsa3q9-yhKn3Zm7W29b1hGq1tWzV1NrWh7Y3ve1NbN8Gu7Tk5WdhV9BeH3iWvo-F88JRNnh_Hg4dJ5gTwNpMMGQXhCiZzmgOXhbMCAUsvXamwAO844-hpLlUqVOuFYlBAwRmgoJZ3ye3edxOaj62PrVlX0fnVyta-2UajpVI5pzlL5M2fJM9RCxTyX5BRyqlGlcDrX-Cy2YY6nWu00ApR0p0b20MuNDEGvzCbkJ4WPg0Fs8vFfOdidrmYQy5JdLUXVd77H4FgnGsp-BeHfoXT</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Brown Do Coutto Filho, M.</creator><creator>de Souza, J.C.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>F28</scope></search><sort><creationdate>20091101</creationdate><title>Forecasting-Aided State Estimation-Part I: Panorama</title><author>Brown Do Coutto Filho, M. ; de Souza, J.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data analysis</topic><topic>Filtering</topic><topic>Observability</topic><topic>Power measurement</topic><topic>Power system measurements</topic><topic>Random processes</topic><topic>Redundancy</topic><topic>State estimation</topic><topic>state forecasting</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown Do Coutto Filho, M.</creatorcontrib><creatorcontrib>de Souza, J.C.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown Do Coutto Filho, M.</au><au>de Souza, J.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting-Aided State Estimation-Part I: Panorama</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>24</volume><issue>4</issue><spage>1667</spage><epage>1677</epage><pages>1667-1677</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The art of estimating future values of a random process, based upon previously observed or estimated values, is usually known as a priori estimation, prediction, or forecasting. Power system state estimation process can be enhanced if state/measurement forecasts are incorporated into it. Important research efforts have been made in this direction bringing a fresh perspective to the state estimation problem. This paper (Part I) presents a comprehensive survey of forecasting-aided state estimators. It gathers up-covering a period of three decades-research results on the main benefits achieved by state estimators with forecasting capability regarding: data redundancy, innovation analysis, observability, filtering, bad data, and network configuration and parameter error processing. Aspects of modeling, forecasting techniques, and computational effort are also addressed. The second of this two-paper series presents the results of the implementation of a forecasting-aided state estimator in the energy management system of the LIGHT Services of Electricity, a company which provides electric energy to Rio de Janeiro, Brazil.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2009.2030295</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2009-11, Vol.24 (4), p.1667-1677
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_21131897
source IEEE Xplore (Online service)
subjects Data analysis
Filtering
Observability
Power measurement
Power system measurements
Random processes
Redundancy
State estimation
state forecasting
Technological innovation
title Forecasting-Aided State Estimation-Part I: Panorama
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting-Aided%20State%20Estimation-Part%20I:%20Panorama&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Brown%20Do%20Coutto%20Filho,%20M.&rft.date=2009-11-01&rft.volume=24&rft.issue=4&rft.spage=1667&rft.epage=1677&rft.pages=1667-1677&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2009.2030295&rft_dat=%3Cproquest_ieee_%3E867743142%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-6292105cb26414036bca5909de6cd79b0ec3239e1467e14188f720b0b320951a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858799616&rft_id=info:pmid/&rft_ieee_id=5233865&rfr_iscdi=true