Loading…

Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat

For the enhancement of the probiotics’ survivability, a nanostructured fiber mat was developed by electrospinning. The probiotic Lactobacillus plantarum was encapsulated in the nanofibers with fructooligosaccharides (FOS) as the cell material. Fluorescence microscope image and scanning electron micr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2018-10, Vol.66 (41), p.10890-10897
Main Authors: Feng, Kun, Zhai, Meng-Yu, Zhang, Ying, Linhardt, Robert J, Zong, Min-Hua, Li, Lin, Wu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the enhancement of the probiotics’ survivability, a nanostructured fiber mat was developed by electrospinning. The probiotic Lactobacillus plantarum was encapsulated in the nanofibers with fructooligosaccharides (FOS) as the cell material. Fluorescence microscope image and scanning electron microscopy (SEM) showed that viable cells were successfully encapsulated in nanofibers (mean diameter = 410 ± 150 nm), and the applied voltage had no significant influence on their viability (P > 0.05). A significantly improved viability (1.1 log) was achieved by incorporating 2.5% (w/w) of FOS as the electrospinning material (P < 0.001). Additionally, compared with free cells, the survivability of cells encapsulated in electrospun FOS/PVA/L. plantarum nanofibers was significantly enhanced under moist heat treatment (60 and 70 °C). This study shows that the obtained nanofiber is a feasible entrapment structure to improve the viability and thermal stability of encapsulated probiotic cells and provides an alternative approach for the development of functional food.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.8b02644