Loading…

Monomeric thorium chalcogenolates with bipyridine and terpyridine ligands

Thorium chalcogenolates Th(ER)4 react with 2,2'-bipyridine (bipy) to form complexes with the stoichiometry (bipy)2Th(ER)4 (E = S, Se; R = Ph, C6F5). All four compounds have been isolated and characterized by spectroscopic methods and low-temperature single crystal X-ray diffraction. Two of the...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2018-10, Vol.47 (41), p.14652-14661
Main Authors: Ringgold, Marissa, Wu, Wen, Stuber, Matthew, Kornienko, Anna Y, Emge, Thomas J, Brennan, John G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thorium chalcogenolates Th(ER)4 react with 2,2'-bipyridine (bipy) to form complexes with the stoichiometry (bipy)2Th(ER)4 (E = S, Se; R = Ph, C6F5). All four compounds have been isolated and characterized by spectroscopic methods and low-temperature single crystal X-ray diffraction. Two of the products, (bipy)2Th(SC6F5)4 and (bipy)2Th(SeC6F5)4, crystallize with lattice solvent, (bipy)2Th(SPh)4 crystallizes with no lattice solvent, and the selenolate (bipy)2Th(SePh)4 crystallizes in two phases, with and without lattice solvent. In all four compounds the available volume for coordination bounded by the two bipy ligands is large enough to allow significant conformational flexibility of thiolate or selenolate ligands. 77Se NMR confirms that the structures of the selenolate products are the same in pyridine solution and in the solid state. Attempts to prepare analogous derivatives with 2,2',6',2''-terpyridine (terpy) were successful only in the isolation of (terpy)(py)Th(SPh)4, the first terpy compound of thorium. These materials are thermochromic, with color attributed to ligand-to-ligand charge transfer excitations.
ISSN:1477-9226
1477-9234
DOI:10.1039/c8dt02543f