Loading…
Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present...
Saved in:
Published in: | Nature chemistry 2018-12, Vol.10 (12), p.1180-1189 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3 |
container_end_page | 1189 |
container_issue | 12 |
container_start_page | 1180 |
container_title | Nature chemistry |
container_volume | 10 |
creator | Wang, Xiaoyan Chen, Linjiang Chong, Samantha Y. Little, Marc A. Wu, Yongzhen Zhu, Wei-Hong Clowes, Rob Yan, Yong Zwijnenburg, Martijn A. Sprick, Reiner Sebastian Cooper, Andrew I. |
description | Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g
−1
h
−1
. The COF also retained its photocatalytic activity when cast as a thin film onto a support.
The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water. |
doi_str_mv | 10.1038/s41557-018-0141-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2115749637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115749637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMovn-AGym4cVPNs2mXIr5AcKGuQ5K5GattMiapMv_eyPgAwcUlF853zg0HoQOCTwhm7WniRAhZY9KW4aQWa2ibSCFqzni3_rMzvIV2UnrGuBGMNJtoi2FaJCy3kbqfBhc81Db4rHvf-3llw5sewOcqxLn2va1c1CO8h_iSKhditXgKOVid9bDMRX1azmKYg6_gLQxT7oMvhjBW7zpD3EMbTg8J9r_eXfR4efFwfl3f3l3dnJ_d1pZLkWuKHWjZNKJthXXCMWc6sMY4wWbYNoa3RLbGEAKOCwLUWKCca0N1Jx00ju2i41XuIobXCVJWY58sDIP2EKakKCFC8q5hsqBHf9DnMEVfflco1gguKe0KRVaUjSGlCE4tYj_quFQEq8_21ap9VdpXn-0rUTyHX8mTGWH24_iuuwB0BaQi-TnE39P_p34A3KWR8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136547229</pqid></control><display><type>article</type><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><source>Nature</source><creator>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</creator><creatorcontrib>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</creatorcontrib><description>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g
−1
h
−1
. The COF also retained its photocatalytic activity when cast as a thin film onto a support.
The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-018-0141-5</identifier><identifier>PMID: 30275507</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298 ; 639/638/439/890 ; 639/638/77/890 ; Aluminum ; Analytical Chemistry ; Benzothiophene ; Biochemistry ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Crystallinity ; Electromagnetic absorption ; Evolution ; Hydrogen ; Hydrogen evolution ; Inorganic Chemistry ; Irradiation ; Organic Chemistry ; Organic semiconductors ; Photocatalysis ; Photochemicals ; Photosynthesis ; Physical Chemistry ; Quantum efficiency ; Radiation ; Splitting ; Thin films ; Water splitting</subject><ispartof>Nature chemistry, 2018-12, Vol.10 (12), p.1180-1189</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</citedby><cites>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</cites><orcidid>0000-0002-3095-875X ; 0000-0002-5389-2706 ; 0000-0001-5291-2130 ; 0000-0003-1876-532X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30275507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Chong, Samantha Y.</creatorcontrib><creatorcontrib>Little, Marc A.</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Zhu, Wei-Hong</creatorcontrib><creatorcontrib>Clowes, Rob</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Zwijnenburg, Martijn A.</creatorcontrib><creatorcontrib>Sprick, Reiner Sebastian</creatorcontrib><creatorcontrib>Cooper, Andrew I.</creatorcontrib><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g
−1
h
−1
. The COF also retained its photocatalytic activity when cast as a thin film onto a support.
The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</description><subject>639/638/298</subject><subject>639/638/439/890</subject><subject>639/638/77/890</subject><subject>Aluminum</subject><subject>Analytical Chemistry</subject><subject>Benzothiophene</subject><subject>Biochemistry</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electromagnetic absorption</subject><subject>Evolution</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Inorganic Chemistry</subject><subject>Irradiation</subject><subject>Organic Chemistry</subject><subject>Organic semiconductors</subject><subject>Photocatalysis</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Physical Chemistry</subject><subject>Quantum efficiency</subject><subject>Radiation</subject><subject>Splitting</subject><subject>Thin films</subject><subject>Water splitting</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMovn-AGym4cVPNs2mXIr5AcKGuQ5K5GattMiapMv_eyPgAwcUlF853zg0HoQOCTwhm7WniRAhZY9KW4aQWa2ibSCFqzni3_rMzvIV2UnrGuBGMNJtoi2FaJCy3kbqfBhc81Db4rHvf-3llw5sewOcqxLn2va1c1CO8h_iSKhditXgKOVid9bDMRX1azmKYg6_gLQxT7oMvhjBW7zpD3EMbTg8J9r_eXfR4efFwfl3f3l3dnJ_d1pZLkWuKHWjZNKJthXXCMWc6sMY4wWbYNoa3RLbGEAKOCwLUWKCca0N1Jx00ju2i41XuIobXCVJWY58sDIP2EKakKCFC8q5hsqBHf9DnMEVfflco1gguKe0KRVaUjSGlCE4tYj_quFQEq8_21ap9VdpXn-0rUTyHX8mTGWH24_iuuwB0BaQi-TnE39P_p34A3KWR8w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Wang, Xiaoyan</creator><creator>Chen, Linjiang</creator><creator>Chong, Samantha Y.</creator><creator>Little, Marc A.</creator><creator>Wu, Yongzhen</creator><creator>Zhu, Wei-Hong</creator><creator>Clowes, Rob</creator><creator>Yan, Yong</creator><creator>Zwijnenburg, Martijn A.</creator><creator>Sprick, Reiner Sebastian</creator><creator>Cooper, Andrew I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3095-875X</orcidid><orcidid>https://orcid.org/0000-0002-5389-2706</orcidid><orcidid>https://orcid.org/0000-0001-5291-2130</orcidid><orcidid>https://orcid.org/0000-0003-1876-532X</orcidid></search><sort><creationdate>20181201</creationdate><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><author>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/298</topic><topic>639/638/439/890</topic><topic>639/638/77/890</topic><topic>Aluminum</topic><topic>Analytical Chemistry</topic><topic>Benzothiophene</topic><topic>Biochemistry</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electromagnetic absorption</topic><topic>Evolution</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Inorganic Chemistry</topic><topic>Irradiation</topic><topic>Organic Chemistry</topic><topic>Organic semiconductors</topic><topic>Photocatalysis</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Physical Chemistry</topic><topic>Quantum efficiency</topic><topic>Radiation</topic><topic>Splitting</topic><topic>Thin films</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Chong, Samantha Y.</creatorcontrib><creatorcontrib>Little, Marc A.</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Zhu, Wei-Hong</creatorcontrib><creatorcontrib>Clowes, Rob</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Zwijnenburg, Martijn A.</creatorcontrib><creatorcontrib>Sprick, Reiner Sebastian</creatorcontrib><creatorcontrib>Cooper, Andrew I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyan</au><au>Chen, Linjiang</au><au>Chong, Samantha Y.</au><au>Little, Marc A.</au><au>Wu, Yongzhen</au><au>Zhu, Wei-Hong</au><au>Clowes, Rob</au><au>Yan, Yong</au><au>Zwijnenburg, Martijn A.</au><au>Sprick, Reiner Sebastian</au><au>Cooper, Andrew I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>1180</spage><epage>1189</epage><pages>1180-1189</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g
−1
h
−1
. The COF also retained its photocatalytic activity when cast as a thin film onto a support.
The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30275507</pmid><doi>10.1038/s41557-018-0141-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3095-875X</orcidid><orcidid>https://orcid.org/0000-0002-5389-2706</orcidid><orcidid>https://orcid.org/0000-0001-5291-2130</orcidid><orcidid>https://orcid.org/0000-0003-1876-532X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-12, Vol.10 (12), p.1180-1189 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2115749637 |
source | Nature |
subjects | 639/638/298 639/638/439/890 639/638/77/890 Aluminum Analytical Chemistry Benzothiophene Biochemistry Catalysts Catalytic activity Chemistry Chemistry and Materials Science Chemistry/Food Science Crystal structure Crystallinity Electromagnetic absorption Evolution Hydrogen Hydrogen evolution Inorganic Chemistry Irradiation Organic Chemistry Organic semiconductors Photocatalysis Photochemicals Photosynthesis Physical Chemistry Quantum efficiency Radiation Splitting Thin films Water splitting |
title | Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfone-containing%20covalent%20organic%20frameworks%20for%20photocatalytic%20hydrogen%20evolution%20from%20water&rft.jtitle=Nature%20chemistry&rft.au=Wang,%20Xiaoyan&rft.date=2018-12-01&rft.volume=10&rft.issue=12&rft.spage=1180&rft.epage=1189&rft.pages=1180-1189&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-018-0141-5&rft_dat=%3Cproquest_cross%3E2115749637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136547229&rft_id=info:pmid/30275507&rfr_iscdi=true |