Loading…

Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water

Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2018-12, Vol.10 (12), p.1180-1189
Main Authors: Wang, Xiaoyan, Chen, Linjiang, Chong, Samantha Y., Little, Marc A., Wu, Yongzhen, Zhu, Wei-Hong, Clowes, Rob, Yan, Yong, Zwijnenburg, Martijn A., Sprick, Reiner Sebastian, Cooper, Andrew I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3
cites cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3
container_end_page 1189
container_issue 12
container_start_page 1180
container_title Nature chemistry
container_volume 10
creator Wang, Xiaoyan
Chen, Linjiang
Chong, Samantha Y.
Little, Marc A.
Wu, Yongzhen
Zhu, Wei-Hong
Clowes, Rob
Yan, Yong
Zwijnenburg, Martijn A.
Sprick, Reiner Sebastian
Cooper, Andrew I.
description Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g −1  h −1 . The COF also retained its photocatalytic activity when cast as a thin film onto a support. The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.
doi_str_mv 10.1038/s41557-018-0141-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2115749637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115749637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMovn-AGym4cVPNs2mXIr5AcKGuQ5K5GattMiapMv_eyPgAwcUlF853zg0HoQOCTwhm7WniRAhZY9KW4aQWa2ibSCFqzni3_rMzvIV2UnrGuBGMNJtoi2FaJCy3kbqfBhc81Db4rHvf-3llw5sewOcqxLn2va1c1CO8h_iSKhditXgKOVid9bDMRX1azmKYg6_gLQxT7oMvhjBW7zpD3EMbTg8J9r_eXfR4efFwfl3f3l3dnJ_d1pZLkWuKHWjZNKJthXXCMWc6sMY4wWbYNoa3RLbGEAKOCwLUWKCca0N1Jx00ju2i41XuIobXCVJWY58sDIP2EKakKCFC8q5hsqBHf9DnMEVfflco1gguKe0KRVaUjSGlCE4tYj_quFQEq8_21ap9VdpXn-0rUTyHX8mTGWH24_iuuwB0BaQi-TnE39P_p34A3KWR8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136547229</pqid></control><display><type>article</type><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><source>Nature</source><creator>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</creator><creatorcontrib>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</creatorcontrib><description>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g −1  h −1 . The COF also retained its photocatalytic activity when cast as a thin film onto a support. The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-018-0141-5</identifier><identifier>PMID: 30275507</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298 ; 639/638/439/890 ; 639/638/77/890 ; Aluminum ; Analytical Chemistry ; Benzothiophene ; Biochemistry ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Crystallinity ; Electromagnetic absorption ; Evolution ; Hydrogen ; Hydrogen evolution ; Inorganic Chemistry ; Irradiation ; Organic Chemistry ; Organic semiconductors ; Photocatalysis ; Photochemicals ; Photosynthesis ; Physical Chemistry ; Quantum efficiency ; Radiation ; Splitting ; Thin films ; Water splitting</subject><ispartof>Nature chemistry, 2018-12, Vol.10 (12), p.1180-1189</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</citedby><cites>FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</cites><orcidid>0000-0002-3095-875X ; 0000-0002-5389-2706 ; 0000-0001-5291-2130 ; 0000-0003-1876-532X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30275507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Chong, Samantha Y.</creatorcontrib><creatorcontrib>Little, Marc A.</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Zhu, Wei-Hong</creatorcontrib><creatorcontrib>Clowes, Rob</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Zwijnenburg, Martijn A.</creatorcontrib><creatorcontrib>Sprick, Reiner Sebastian</creatorcontrib><creatorcontrib>Cooper, Andrew I.</creatorcontrib><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g −1  h −1 . The COF also retained its photocatalytic activity when cast as a thin film onto a support. The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</description><subject>639/638/298</subject><subject>639/638/439/890</subject><subject>639/638/77/890</subject><subject>Aluminum</subject><subject>Analytical Chemistry</subject><subject>Benzothiophene</subject><subject>Biochemistry</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electromagnetic absorption</subject><subject>Evolution</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Inorganic Chemistry</subject><subject>Irradiation</subject><subject>Organic Chemistry</subject><subject>Organic semiconductors</subject><subject>Photocatalysis</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Physical Chemistry</subject><subject>Quantum efficiency</subject><subject>Radiation</subject><subject>Splitting</subject><subject>Thin films</subject><subject>Water splitting</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMovn-AGym4cVPNs2mXIr5AcKGuQ5K5GattMiapMv_eyPgAwcUlF853zg0HoQOCTwhm7WniRAhZY9KW4aQWa2ibSCFqzni3_rMzvIV2UnrGuBGMNJtoi2FaJCy3kbqfBhc81Db4rHvf-3llw5sewOcqxLn2va1c1CO8h_iSKhditXgKOVid9bDMRX1azmKYg6_gLQxT7oMvhjBW7zpD3EMbTg8J9r_eXfR4efFwfl3f3l3dnJ_d1pZLkWuKHWjZNKJthXXCMWc6sMY4wWbYNoa3RLbGEAKOCwLUWKCca0N1Jx00ju2i41XuIobXCVJWY58sDIP2EKakKCFC8q5hsqBHf9DnMEVfflco1gguKe0KRVaUjSGlCE4tYj_quFQEq8_21ap9VdpXn-0rUTyHX8mTGWH24_iuuwB0BaQi-TnE39P_p34A3KWR8w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Wang, Xiaoyan</creator><creator>Chen, Linjiang</creator><creator>Chong, Samantha Y.</creator><creator>Little, Marc A.</creator><creator>Wu, Yongzhen</creator><creator>Zhu, Wei-Hong</creator><creator>Clowes, Rob</creator><creator>Yan, Yong</creator><creator>Zwijnenburg, Martijn A.</creator><creator>Sprick, Reiner Sebastian</creator><creator>Cooper, Andrew I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3095-875X</orcidid><orcidid>https://orcid.org/0000-0002-5389-2706</orcidid><orcidid>https://orcid.org/0000-0001-5291-2130</orcidid><orcidid>https://orcid.org/0000-0003-1876-532X</orcidid></search><sort><creationdate>20181201</creationdate><title>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</title><author>Wang, Xiaoyan ; Chen, Linjiang ; Chong, Samantha Y. ; Little, Marc A. ; Wu, Yongzhen ; Zhu, Wei-Hong ; Clowes, Rob ; Yan, Yong ; Zwijnenburg, Martijn A. ; Sprick, Reiner Sebastian ; Cooper, Andrew I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/298</topic><topic>639/638/439/890</topic><topic>639/638/77/890</topic><topic>Aluminum</topic><topic>Analytical Chemistry</topic><topic>Benzothiophene</topic><topic>Biochemistry</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electromagnetic absorption</topic><topic>Evolution</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Inorganic Chemistry</topic><topic>Irradiation</topic><topic>Organic Chemistry</topic><topic>Organic semiconductors</topic><topic>Photocatalysis</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Physical Chemistry</topic><topic>Quantum efficiency</topic><topic>Radiation</topic><topic>Splitting</topic><topic>Thin films</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Chong, Samantha Y.</creatorcontrib><creatorcontrib>Little, Marc A.</creatorcontrib><creatorcontrib>Wu, Yongzhen</creatorcontrib><creatorcontrib>Zhu, Wei-Hong</creatorcontrib><creatorcontrib>Clowes, Rob</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Zwijnenburg, Martijn A.</creatorcontrib><creatorcontrib>Sprick, Reiner Sebastian</creatorcontrib><creatorcontrib>Cooper, Andrew I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyan</au><au>Chen, Linjiang</au><au>Chong, Samantha Y.</au><au>Little, Marc A.</au><au>Wu, Yongzhen</au><au>Zhu, Wei-Hong</au><au>Clowes, Rob</au><au>Yan, Yong</au><au>Zwijnenburg, Martijn A.</au><au>Sprick, Reiner Sebastian</au><au>Cooper, Andrew I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>1180</spage><epage>1189</epage><pages>1180-1189</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g −1  h −1 . The COF also retained its photocatalytic activity when cast as a thin film onto a support. The inherent synthetic tuneability of organic materials makes them attractive in photocatalysis, but they tend to have low quantum efficiencies for water splitting. A crystalline covalent organic framework featuring a benzo-bis(benzothiophene sulfone) moiety has now been shown to exhibit high activity for photochemical hydrogen evolution from water.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30275507</pmid><doi>10.1038/s41557-018-0141-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3095-875X</orcidid><orcidid>https://orcid.org/0000-0002-5389-2706</orcidid><orcidid>https://orcid.org/0000-0001-5291-2130</orcidid><orcidid>https://orcid.org/0000-0003-1876-532X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2018-12, Vol.10 (12), p.1180-1189
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2115749637
source Nature
subjects 639/638/298
639/638/439/890
639/638/77/890
Aluminum
Analytical Chemistry
Benzothiophene
Biochemistry
Catalysts
Catalytic activity
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Crystal structure
Crystallinity
Electromagnetic absorption
Evolution
Hydrogen
Hydrogen evolution
Inorganic Chemistry
Irradiation
Organic Chemistry
Organic semiconductors
Photocatalysis
Photochemicals
Photosynthesis
Physical Chemistry
Quantum efficiency
Radiation
Splitting
Thin films
Water splitting
title Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfone-containing%20covalent%20organic%20frameworks%20for%20photocatalytic%20hydrogen%20evolution%20from%20water&rft.jtitle=Nature%20chemistry&rft.au=Wang,%20Xiaoyan&rft.date=2018-12-01&rft.volume=10&rft.issue=12&rft.spage=1180&rft.epage=1189&rft.pages=1180-1189&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-018-0141-5&rft_dat=%3Cproquest_cross%3E2115749637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-20fea7665885cf5f3fb9ecbbf53d0c6b48178bb11ef451e2bce244ab2a97fe6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136547229&rft_id=info:pmid/30275507&rfr_iscdi=true