Loading…
Targeting Canine KIT Promoter by Candidate DNA G-Quadruplex Ligands
G-quadruplexes (G4) are nucleic acid secondary structures frequently assumed by G-rich sequences located mostly at telomeres and proto-oncogenes promoters. Recently, we identified, in canine KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) promoter, two G-rich sequences able to fo...
Saved in:
Published in: | The Journal of pharmacology and experimental therapeutics 2018-12, Vol.367 (3), p.461-472 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | G-quadruplexes (G4) are nucleic acid secondary structures frequently assumed by G-rich sequences located mostly at telomeres and proto-oncogenes promoters. Recently, we identified, in canine KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) promoter, two G-rich sequences able to fold into G4: d_kit1 and d_kit2_A16. In this study, an anthraquinone (AQ1) and an anthracene derivative (AN6), known to stabilize the G4 structures of the corresponding human h_kit1 and h_kit2, were tested on the canine G4 and in two canine mast cell tumor (MCT) cell lines (C2 and NI-1) to verify their capability to down-regulate KIT expression. The cytotoxicity of AQ1 and AN6 was determined using the Alamar Blue test; also the constitutive expression of KIT and other proto-oncogenes containing G4 structures in their promoter (BCL2, VEGFα, VEGFR2, KRAS, and TERT) was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Then the time- and dose-dependent effects of both ligands on target gene expression were assessed by qRT-PCR. All target genes were constitutively expressed up to 96 hours of culture. Both ligands decreased KIT mRNA levels and c-kit protein amount, and AN6 was comparatively fairly more effective. DNA interaction studies and a dual-luciferase gene reporter assay performed on a noncancerous canine cell line (Madin-Darby Canine Kidney cells) proved that this down-regulation was the result of the interaction of AN6 with KIT proximal promoter. Interestingly, our results only partially overlap with those previously obtained in human cell lines, where AQ1 was found as the most effective compound. These preliminary data might suggest AN6 as a promising candidate for the selective targeting of canine KIT-dependent tumors. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.118.248997 |