Loading…

N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway

Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five g...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental pharmacology & physiology 2019-02, Vol.46 (2), p.163-172
Main Authors: Zhang, Ruipeng, Wang, Yang, Pan, Longfei, Tian, Hongyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903
cites cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903
container_end_page 172
container_issue 2
container_start_page 163
container_title Clinical and experimental pharmacology & physiology
container_volume 46
creator Zhang, Ruipeng
Wang, Yang
Pan, Longfei
Tian, Hongyan
description Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.
doi_str_mv 10.1111/1440-1681.13039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116851636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172513763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</originalsourceid><addsrcrecordid>eNqFkcFuFSEUhomxsdfq2p0hceNmWhgGZmZ5c9NWY1u70PUEmIOXBoZxYNrMzkfoE_hwPonc3tqFm5IQEvjOB4cfoXeUHNM8TmhVkYKKhh5TRlj7Aq2edl6iFWGEF7SpySF6HeMNIYQTwV6hQ0bKpm3baoV-X_35db_WkBanl5jADoDHkGBIViaIOG0BbyX40C-D9FZn2vpxCrd2-IHBGNAJB4OjdT0M0liH7YAlnqRSNuFcBm53LvWcsnh2PgxyWrJ2Cl4FyNPZ6PGtlQ9XjazBl-vrL3iUaXsnlzfowEgX4e3jeoS-n51-23wqLr6ef96sLwrNatoWjABtSKO5or0SRvdVVTOijOClIkLVqjStoarUJVNV0xPdCs6Z7CnjvK1bwo7Qx703t_Zzhpg6b6MG5-QAYY5dSfOXciqYyOiH_9CbME9Dfl2m6pJTVguWqZM9pacQ4wSmGyfrc-sdJd0uum4XVLcLqnuILle8f_TOykP_xP_LKgN8D9xZB8tzvm5zer0X_wVx7KY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172513763</pqid></control><display><type>article</type><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>EBSCOhost SPORTDiscus with Full Text</source><creator>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</creator><creatorcontrib>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</creatorcontrib><description>Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13039</identifier><identifier>PMID: 30289994</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Acetylcysteine ; Acetylcysteine - pharmacology ; Acute Disease ; acute pulmonary thromboembolism ; Alveoli ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bronchus ; Cell Count ; Chemokine CCL2 - metabolism ; Disease Models, Animal ; Drug Synergism ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - pathology ; FOXO1 protein ; Health risk assessment ; Hemodynamics ; Hemodynamics - drug effects ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Lung - drug effects ; Lung - metabolism ; Lung - pathology ; Lung - physiopathology ; Lungs ; Male ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Matrix metalloproteinase ; Matrix Metalloproteinase 9 - metabolism ; Metalloproteinase ; Neutrophils - cytology ; Neutrophils - drug effects ; Nitric Oxide - metabolism ; n‐acetylcysteine ; Oxidative stress ; Oxidative Stress - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxidation ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Embolism - drug therapy ; Pulmonary Embolism - metabolism ; Pulmonary Embolism - pathology ; Pulmonary Embolism - physiopathology ; Rabbits ; Signal transduction ; Sildenafil ; Sildenafil Citrate - pharmacology ; Sildenafil Citrate - therapeutic use ; Thromboembolism</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2019-02, Vol.46 (2), p.163-172</ispartof><rights>2018 John Wiley &amp; Sons Australia, Ltd</rights><rights>2018 John Wiley &amp; Sons Australia, Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</citedby><cites>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</cites><orcidid>0000-0002-6382-0036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30289994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ruipeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Pan, Longfei</creatorcontrib><creatorcontrib>Tian, Hongyan</creatorcontrib><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</description><subject>Acetylcysteine</subject><subject>Acetylcysteine - pharmacology</subject><subject>Acute Disease</subject><subject>acute pulmonary thromboembolism</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bronchus</subject><subject>Cell Count</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Disease Models, Animal</subject><subject>Drug Synergism</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - pathology</subject><subject>FOXO1 protein</subject><subject>Health risk assessment</subject><subject>Hemodynamics</subject><subject>Hemodynamics - drug effects</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung - physiopathology</subject><subject>Lungs</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Metalloproteinase</subject><subject>Neutrophils - cytology</subject><subject>Neutrophils - drug effects</subject><subject>Nitric Oxide - metabolism</subject><subject>n‐acetylcysteine</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxidation</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Embolism - drug therapy</subject><subject>Pulmonary Embolism - metabolism</subject><subject>Pulmonary Embolism - pathology</subject><subject>Pulmonary Embolism - physiopathology</subject><subject>Rabbits</subject><subject>Signal transduction</subject><subject>Sildenafil</subject><subject>Sildenafil Citrate - pharmacology</subject><subject>Sildenafil Citrate - therapeutic use</subject><subject>Thromboembolism</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuFSEUhomxsdfq2p0hceNmWhgGZmZ5c9NWY1u70PUEmIOXBoZxYNrMzkfoE_hwPonc3tqFm5IQEvjOB4cfoXeUHNM8TmhVkYKKhh5TRlj7Aq2edl6iFWGEF7SpySF6HeMNIYQTwV6hQ0bKpm3baoV-X_35db_WkBanl5jADoDHkGBIViaIOG0BbyX40C-D9FZn2vpxCrd2-IHBGNAJB4OjdT0M0liH7YAlnqRSNuFcBm53LvWcsnh2PgxyWrJ2Cl4FyNPZ6PGtlQ9XjazBl-vrL3iUaXsnlzfowEgX4e3jeoS-n51-23wqLr6ef96sLwrNatoWjABtSKO5or0SRvdVVTOijOClIkLVqjStoarUJVNV0xPdCs6Z7CnjvK1bwo7Qx703t_Zzhpg6b6MG5-QAYY5dSfOXciqYyOiH_9CbME9Dfl2m6pJTVguWqZM9pacQ4wSmGyfrc-sdJd0uum4XVLcLqnuILle8f_TOykP_xP_LKgN8D9xZB8tzvm5zer0X_wVx7KY8</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Zhang, Ruipeng</creator><creator>Wang, Yang</creator><creator>Pan, Longfei</creator><creator>Tian, Hongyan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6382-0036</orcidid></search><sort><creationdate>201902</creationdate><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><author>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylcysteine</topic><topic>Acetylcysteine - pharmacology</topic><topic>Acute Disease</topic><topic>acute pulmonary thromboembolism</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bronchus</topic><topic>Cell Count</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Disease Models, Animal</topic><topic>Drug Synergism</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - pathology</topic><topic>FOXO1 protein</topic><topic>Health risk assessment</topic><topic>Hemodynamics</topic><topic>Hemodynamics - drug effects</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung - physiopathology</topic><topic>Lungs</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Metalloproteinase</topic><topic>Neutrophils - cytology</topic><topic>Neutrophils - drug effects</topic><topic>Nitric Oxide - metabolism</topic><topic>n‐acetylcysteine</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxidation</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Embolism - drug therapy</topic><topic>Pulmonary Embolism - metabolism</topic><topic>Pulmonary Embolism - pathology</topic><topic>Pulmonary Embolism - physiopathology</topic><topic>Rabbits</topic><topic>Signal transduction</topic><topic>Sildenafil</topic><topic>Sildenafil Citrate - pharmacology</topic><topic>Sildenafil Citrate - therapeutic use</topic><topic>Thromboembolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruipeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Pan, Longfei</creatorcontrib><creatorcontrib>Tian, Hongyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruipeng</au><au>Wang, Yang</au><au>Pan, Longfei</au><au>Tian, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2019-02</date><risdate>2019</risdate><volume>46</volume><issue>2</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30289994</pmid><doi>10.1111/1440-1681.13039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6382-0036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2019-02, Vol.46 (2), p.163-172
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_miscellaneous_2116851636
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); EBSCOhost SPORTDiscus with Full Text
subjects Acetylcysteine
Acetylcysteine - pharmacology
Acute Disease
acute pulmonary thromboembolism
Alveoli
Animals
Apoptosis
Apoptosis - drug effects
Bronchus
Cell Count
Chemokine CCL2 - metabolism
Disease Models, Animal
Drug Synergism
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - pathology
FOXO1 protein
Health risk assessment
Hemodynamics
Hemodynamics - drug effects
Lipid peroxidation
Lipid Peroxidation - drug effects
Lipids
Lung - drug effects
Lung - metabolism
Lung - pathology
Lung - physiopathology
Lungs
Male
MAP kinase
MAP Kinase Signaling System - drug effects
Matrix metalloproteinase
Matrix Metalloproteinase 9 - metabolism
Metalloproteinase
Neutrophils - cytology
Neutrophils - drug effects
Nitric Oxide - metabolism
n‐acetylcysteine
Oxidative stress
Oxidative Stress - drug effects
p38 Mitogen-Activated Protein Kinases - metabolism
Peroxidation
Pulmonary arteries
Pulmonary artery
Pulmonary Embolism - drug therapy
Pulmonary Embolism - metabolism
Pulmonary Embolism - pathology
Pulmonary Embolism - physiopathology
Rabbits
Signal transduction
Sildenafil
Sildenafil Citrate - pharmacology
Sildenafil Citrate - therapeutic use
Thromboembolism
title N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%90Acetylcysteine%20potentiates%20the%20haemodynamic%E2%80%90improving%20effect%20of%20sildenafil%20in%20a%20rabbit%20model%20of%20acute%20pulmonary%20thromboembolism%20via%20the%20p38%20MAPK%20pathway&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Zhang,%20Ruipeng&rft.date=2019-02&rft.volume=46&rft.issue=2&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13039&rft_dat=%3Cproquest_cross%3E2172513763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172513763&rft_id=info:pmid/30289994&rfr_iscdi=true