Loading…
N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway
Summary The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five g...
Saved in:
Published in: | Clinical and experimental pharmacology & physiology 2019-02, Vol.46 (2), p.163-172 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903 |
---|---|
cites | cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903 |
container_end_page | 172 |
container_issue | 2 |
container_start_page | 163 |
container_title | Clinical and experimental pharmacology & physiology |
container_volume | 46 |
creator | Zhang, Ruipeng Wang, Yang Pan, Longfei Tian, Hongyan |
description | Summary
The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT. |
doi_str_mv | 10.1111/1440-1681.13039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116851636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172513763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</originalsourceid><addsrcrecordid>eNqFkcFuFSEUhomxsdfq2p0hceNmWhgGZmZ5c9NWY1u70PUEmIOXBoZxYNrMzkfoE_hwPonc3tqFm5IQEvjOB4cfoXeUHNM8TmhVkYKKhh5TRlj7Aq2edl6iFWGEF7SpySF6HeMNIYQTwV6hQ0bKpm3baoV-X_35db_WkBanl5jADoDHkGBIViaIOG0BbyX40C-D9FZn2vpxCrd2-IHBGNAJB4OjdT0M0liH7YAlnqRSNuFcBm53LvWcsnh2PgxyWrJ2Cl4FyNPZ6PGtlQ9XjazBl-vrL3iUaXsnlzfowEgX4e3jeoS-n51-23wqLr6ef96sLwrNatoWjABtSKO5or0SRvdVVTOijOClIkLVqjStoarUJVNV0xPdCs6Z7CnjvK1bwo7Qx703t_Zzhpg6b6MG5-QAYY5dSfOXciqYyOiH_9CbME9Dfl2m6pJTVguWqZM9pacQ4wSmGyfrc-sdJd0uum4XVLcLqnuILle8f_TOykP_xP_LKgN8D9xZB8tzvm5zer0X_wVx7KY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172513763</pqid></control><display><type>article</type><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>EBSCOhost SPORTDiscus with Full Text</source><creator>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</creator><creatorcontrib>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</creatorcontrib><description>Summary
The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13039</identifier><identifier>PMID: 30289994</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Acetylcysteine ; Acetylcysteine - pharmacology ; Acute Disease ; acute pulmonary thromboembolism ; Alveoli ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bronchus ; Cell Count ; Chemokine CCL2 - metabolism ; Disease Models, Animal ; Drug Synergism ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - pathology ; FOXO1 protein ; Health risk assessment ; Hemodynamics ; Hemodynamics - drug effects ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Lung - drug effects ; Lung - metabolism ; Lung - pathology ; Lung - physiopathology ; Lungs ; Male ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Matrix metalloproteinase ; Matrix Metalloproteinase 9 - metabolism ; Metalloproteinase ; Neutrophils - cytology ; Neutrophils - drug effects ; Nitric Oxide - metabolism ; n‐acetylcysteine ; Oxidative stress ; Oxidative Stress - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxidation ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Embolism - drug therapy ; Pulmonary Embolism - metabolism ; Pulmonary Embolism - pathology ; Pulmonary Embolism - physiopathology ; Rabbits ; Signal transduction ; Sildenafil ; Sildenafil Citrate - pharmacology ; Sildenafil Citrate - therapeutic use ; Thromboembolism</subject><ispartof>Clinical and experimental pharmacology & physiology, 2019-02, Vol.46 (2), p.163-172</ispartof><rights>2018 John Wiley & Sons Australia, Ltd</rights><rights>2018 John Wiley & Sons Australia, Ltd.</rights><rights>Copyright © 2019 John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</citedby><cites>FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</cites><orcidid>0000-0002-6382-0036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30289994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ruipeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Pan, Longfei</creatorcontrib><creatorcontrib>Tian, Hongyan</creatorcontrib><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><title>Clinical and experimental pharmacology & physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary
The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</description><subject>Acetylcysteine</subject><subject>Acetylcysteine - pharmacology</subject><subject>Acute Disease</subject><subject>acute pulmonary thromboembolism</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bronchus</subject><subject>Cell Count</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Disease Models, Animal</subject><subject>Drug Synergism</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - pathology</subject><subject>FOXO1 protein</subject><subject>Health risk assessment</subject><subject>Hemodynamics</subject><subject>Hemodynamics - drug effects</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung - physiopathology</subject><subject>Lungs</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Metalloproteinase</subject><subject>Neutrophils - cytology</subject><subject>Neutrophils - drug effects</subject><subject>Nitric Oxide - metabolism</subject><subject>n‐acetylcysteine</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxidation</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Embolism - drug therapy</subject><subject>Pulmonary Embolism - metabolism</subject><subject>Pulmonary Embolism - pathology</subject><subject>Pulmonary Embolism - physiopathology</subject><subject>Rabbits</subject><subject>Signal transduction</subject><subject>Sildenafil</subject><subject>Sildenafil Citrate - pharmacology</subject><subject>Sildenafil Citrate - therapeutic use</subject><subject>Thromboembolism</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuFSEUhomxsdfq2p0hceNmWhgGZmZ5c9NWY1u70PUEmIOXBoZxYNrMzkfoE_hwPonc3tqFm5IQEvjOB4cfoXeUHNM8TmhVkYKKhh5TRlj7Aq2edl6iFWGEF7SpySF6HeMNIYQTwV6hQ0bKpm3baoV-X_35db_WkBanl5jADoDHkGBIViaIOG0BbyX40C-D9FZn2vpxCrd2-IHBGNAJB4OjdT0M0liH7YAlnqRSNuFcBm53LvWcsnh2PgxyWrJ2Cl4FyNPZ6PGtlQ9XjazBl-vrL3iUaXsnlzfowEgX4e3jeoS-n51-23wqLr6ef96sLwrNatoWjABtSKO5or0SRvdVVTOijOClIkLVqjStoarUJVNV0xPdCs6Z7CnjvK1bwo7Qx703t_Zzhpg6b6MG5-QAYY5dSfOXciqYyOiH_9CbME9Dfl2m6pJTVguWqZM9pacQ4wSmGyfrc-sdJd0uum4XVLcLqnuILle8f_TOykP_xP_LKgN8D9xZB8tzvm5zer0X_wVx7KY8</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Zhang, Ruipeng</creator><creator>Wang, Yang</creator><creator>Pan, Longfei</creator><creator>Tian, Hongyan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6382-0036</orcidid></search><sort><creationdate>201902</creationdate><title>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</title><author>Zhang, Ruipeng ; Wang, Yang ; Pan, Longfei ; Tian, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylcysteine</topic><topic>Acetylcysteine - pharmacology</topic><topic>Acute Disease</topic><topic>acute pulmonary thromboembolism</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bronchus</topic><topic>Cell Count</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Disease Models, Animal</topic><topic>Drug Synergism</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - pathology</topic><topic>FOXO1 protein</topic><topic>Health risk assessment</topic><topic>Hemodynamics</topic><topic>Hemodynamics - drug effects</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung - physiopathology</topic><topic>Lungs</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Metalloproteinase</topic><topic>Neutrophils - cytology</topic><topic>Neutrophils - drug effects</topic><topic>Nitric Oxide - metabolism</topic><topic>n‐acetylcysteine</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxidation</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Embolism - drug therapy</topic><topic>Pulmonary Embolism - metabolism</topic><topic>Pulmonary Embolism - pathology</topic><topic>Pulmonary Embolism - physiopathology</topic><topic>Rabbits</topic><topic>Signal transduction</topic><topic>Sildenafil</topic><topic>Sildenafil Citrate - pharmacology</topic><topic>Sildenafil Citrate - therapeutic use</topic><topic>Thromboembolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruipeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Pan, Longfei</creatorcontrib><creatorcontrib>Tian, Hongyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology & physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruipeng</au><au>Wang, Yang</au><au>Pan, Longfei</au><au>Tian, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway</atitle><jtitle>Clinical and experimental pharmacology & physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2019-02</date><risdate>2019</risdate><volume>46</volume><issue>2</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary
The current study aimed to investigate the effects of sildenafil and N‐acetylcysteine (NAC) on the haemodynamics in a rabbit model of acute pulmonary thromboembolism (APT). We developed an APT model using healthy male China big‐ear rabbits (2.7 ± 0.4 kg). The rabbits were divided into five groups subjected to various interventions. We recorded the haemodynamic parameters and assessed the oxidative stress and lipid peroxidation response in the groups. Additionally, we detected apoptosis‐associated molecules, FoxO1, Bad and Bcl‐2, in the lung tissue. Gelatine zymography was used to detect matrix metalloproteinase (MMP) activity in bronchoalveolar lavage (BLA). Pulmonary artery endothelial cells were isolated, and their apoptosis rates and MMP activity were assayed. N‐acetylcysteine potentiated the haemodynamic‐improving effect of sildenafil and significantly inhibited the oxidative stress response. N‐acetylcysteine combined with sildenafil decreased MMP‐2 and MMP‐9 activity and NO consumption and inhibited apoptosis of pulmonary arterial endothelial cells. Moreover, NAC combined with sildenafil inhibited the expression of MCP‐1 and p‐p38 MAPK. Thus, NAC potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the MCP‐1 and p38 MAPK signalling pathway. This study may provide a promising treatment method for APT.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30289994</pmid><doi>10.1111/1440-1681.13039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6382-0036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1870 |
ispartof | Clinical and experimental pharmacology & physiology, 2019-02, Vol.46 (2), p.163-172 |
issn | 0305-1870 1440-1681 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116851636 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); EBSCOhost SPORTDiscus with Full Text |
subjects | Acetylcysteine Acetylcysteine - pharmacology Acute Disease acute pulmonary thromboembolism Alveoli Animals Apoptosis Apoptosis - drug effects Bronchus Cell Count Chemokine CCL2 - metabolism Disease Models, Animal Drug Synergism Endothelial cells Endothelial Cells - drug effects Endothelial Cells - pathology FOXO1 protein Health risk assessment Hemodynamics Hemodynamics - drug effects Lipid peroxidation Lipid Peroxidation - drug effects Lipids Lung - drug effects Lung - metabolism Lung - pathology Lung - physiopathology Lungs Male MAP kinase MAP Kinase Signaling System - drug effects Matrix metalloproteinase Matrix Metalloproteinase 9 - metabolism Metalloproteinase Neutrophils - cytology Neutrophils - drug effects Nitric Oxide - metabolism n‐acetylcysteine Oxidative stress Oxidative Stress - drug effects p38 Mitogen-Activated Protein Kinases - metabolism Peroxidation Pulmonary arteries Pulmonary artery Pulmonary Embolism - drug therapy Pulmonary Embolism - metabolism Pulmonary Embolism - pathology Pulmonary Embolism - physiopathology Rabbits Signal transduction Sildenafil Sildenafil Citrate - pharmacology Sildenafil Citrate - therapeutic use Thromboembolism |
title | N‐Acetylcysteine potentiates the haemodynamic‐improving effect of sildenafil in a rabbit model of acute pulmonary thromboembolism via the p38 MAPK pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%90Acetylcysteine%20potentiates%20the%20haemodynamic%E2%80%90improving%20effect%20of%20sildenafil%20in%20a%20rabbit%20model%20of%20acute%20pulmonary%20thromboembolism%20via%20the%20p38%20MAPK%20pathway&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Zhang,%20Ruipeng&rft.date=2019-02&rft.volume=46&rft.issue=2&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13039&rft_dat=%3Cproquest_cross%3E2172513763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3719-30e1808c5b1db6fcd44730bf652b06b7b2f9f1b2c23b48d0c96553ad135597903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172513763&rft_id=info:pmid/30289994&rfr_iscdi=true |