Loading…

Predicting aged pork quality using a portable Raman device

The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were c...

Full description

Saved in:
Bibliographic Details
Published in:Meat science 2018-11, Vol.145, p.79-85
Main Authors: Santos, C.C., Zhao, J., Dong, X., Lonergan, S.M., Huff- Lonergan, E., Outhouse, A., Carlson, K.B., Prusa, K.J., Fedler, C.A., Yu, C., Shackelford, S.D., King, D.A., Wheeler, T.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43
cites cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43
container_end_page 85
container_issue
container_start_page 79
container_title Meat science
container_volume 145
creator Santos, C.C.
Zhao, J.
Dong, X.
Lonergan, S.M.
Huff- Lonergan, E.
Outhouse, A.
Carlson, K.B.
Prusa, K.J.
Fedler, C.A.
Yu, C.
Shackelford, S.D.
King, D.A.
Wheeler, T.L.
description The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.
doi_str_mv 10.1016/j.meatsci.2018.05.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116935858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309174018301876</els_id><sourcerecordid>2116935858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWqs_QZmlmxlvXtPEjYj4AkERXYc0uS2pM52azAj-e1Nb3bq6cPjOufARckKhokDr80XVou2TCxUDqiqQFTC6Q0ZUTXgpKFe7ZAQcdEknAg7IYUoLAKCcqX1ywLQGJUQ9IhfPEX1wfVjOCztHX6y6-F58DLYJ_VcxpJ98HfZ22mDxYlu7LDx-BodHZG9mm4TH2zsmb7c3r9f35ePT3cP11WPpuFZ9KWRdT5WSjDsmqXB66q0VE-CypsgANKdaezbzzDOpheQwo1I5m2OhM8nH5Gyzu4rdx4CpN21IDpvGLrEbkmGU1ppLJdX_KMiaay5gklG5QV3sUoo4M6sYWhu_DAWzNmwWZmvYrA0bkCYbzr3T7Yth2qL_a_0qzcDlBsDs5DNgNHkCly5rjuh647vwz4tv1OCMbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056393407</pqid></control><display><type>article</type><title>Predicting aged pork quality using a portable Raman device</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</creator><creatorcontrib>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</creatorcontrib><description>The utility of Raman spectroscopic signatures of fresh pork loin (1 d &amp; 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</description><identifier>ISSN: 0309-1740</identifier><identifier>EISSN: 1873-4138</identifier><identifier>DOI: 10.1016/j.meatsci.2018.05.021</identifier><identifier>PMID: 29908446</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>least squares ; On-line data collection ; pork ; Pork quality ; prediction ; Raman spectral ; Raman spectroscopy ; screening ; sensory properties ; spectral analysis ; supply balance ; Support vector machine ; Tenderness prediction</subject><ispartof>Meat science, 2018-11, Vol.145, p.79-85</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</citedby><cites>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29908446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, C.C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Dong, X.</creatorcontrib><creatorcontrib>Lonergan, S.M.</creatorcontrib><creatorcontrib>Huff- Lonergan, E.</creatorcontrib><creatorcontrib>Outhouse, A.</creatorcontrib><creatorcontrib>Carlson, K.B.</creatorcontrib><creatorcontrib>Prusa, K.J.</creatorcontrib><creatorcontrib>Fedler, C.A.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><creatorcontrib>Shackelford, S.D.</creatorcontrib><creatorcontrib>King, D.A.</creatorcontrib><creatorcontrib>Wheeler, T.L.</creatorcontrib><title>Predicting aged pork quality using a portable Raman device</title><title>Meat science</title><addtitle>Meat Sci</addtitle><description>The utility of Raman spectroscopic signatures of fresh pork loin (1 d &amp; 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</description><subject>least squares</subject><subject>On-line data collection</subject><subject>pork</subject><subject>Pork quality</subject><subject>prediction</subject><subject>Raman spectral</subject><subject>Raman spectroscopy</subject><subject>screening</subject><subject>sensory properties</subject><subject>spectral analysis</subject><subject>supply balance</subject><subject>Support vector machine</subject><subject>Tenderness prediction</subject><issn>0309-1740</issn><issn>1873-4138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWqs_QZmlmxlvXtPEjYj4AkERXYc0uS2pM52azAj-e1Nb3bq6cPjOufARckKhokDr80XVou2TCxUDqiqQFTC6Q0ZUTXgpKFe7ZAQcdEknAg7IYUoLAKCcqX1ywLQGJUQ9IhfPEX1wfVjOCztHX6y6-F58DLYJ_VcxpJ98HfZ22mDxYlu7LDx-BodHZG9mm4TH2zsmb7c3r9f35ePT3cP11WPpuFZ9KWRdT5WSjDsmqXB66q0VE-CypsgANKdaezbzzDOpheQwo1I5m2OhM8nH5Gyzu4rdx4CpN21IDpvGLrEbkmGU1ppLJdX_KMiaay5gklG5QV3sUoo4M6sYWhu_DAWzNmwWZmvYrA0bkCYbzr3T7Yth2qL_a_0qzcDlBsDs5DNgNHkCly5rjuh647vwz4tv1OCMbg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Santos, C.C.</creator><creator>Zhao, J.</creator><creator>Dong, X.</creator><creator>Lonergan, S.M.</creator><creator>Huff- Lonergan, E.</creator><creator>Outhouse, A.</creator><creator>Carlson, K.B.</creator><creator>Prusa, K.J.</creator><creator>Fedler, C.A.</creator><creator>Yu, C.</creator><creator>Shackelford, S.D.</creator><creator>King, D.A.</creator><creator>Wheeler, T.L.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20181101</creationdate><title>Predicting aged pork quality using a portable Raman device</title><author>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>least squares</topic><topic>On-line data collection</topic><topic>pork</topic><topic>Pork quality</topic><topic>prediction</topic><topic>Raman spectral</topic><topic>Raman spectroscopy</topic><topic>screening</topic><topic>sensory properties</topic><topic>spectral analysis</topic><topic>supply balance</topic><topic>Support vector machine</topic><topic>Tenderness prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, C.C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Dong, X.</creatorcontrib><creatorcontrib>Lonergan, S.M.</creatorcontrib><creatorcontrib>Huff- Lonergan, E.</creatorcontrib><creatorcontrib>Outhouse, A.</creatorcontrib><creatorcontrib>Carlson, K.B.</creatorcontrib><creatorcontrib>Prusa, K.J.</creatorcontrib><creatorcontrib>Fedler, C.A.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><creatorcontrib>Shackelford, S.D.</creatorcontrib><creatorcontrib>King, D.A.</creatorcontrib><creatorcontrib>Wheeler, T.L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Meat science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, C.C.</au><au>Zhao, J.</au><au>Dong, X.</au><au>Lonergan, S.M.</au><au>Huff- Lonergan, E.</au><au>Outhouse, A.</au><au>Carlson, K.B.</au><au>Prusa, K.J.</au><au>Fedler, C.A.</au><au>Yu, C.</au><au>Shackelford, S.D.</au><au>King, D.A.</au><au>Wheeler, T.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting aged pork quality using a portable Raman device</atitle><jtitle>Meat science</jtitle><addtitle>Meat Sci</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>145</volume><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0309-1740</issn><eissn>1873-4138</eissn><abstract>The utility of Raman spectroscopic signatures of fresh pork loin (1 d &amp; 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29908446</pmid><doi>10.1016/j.meatsci.2018.05.021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-1740
ispartof Meat science, 2018-11, Vol.145, p.79-85
issn 0309-1740
1873-4138
language eng
recordid cdi_proquest_miscellaneous_2116935858
source ScienceDirect Freedom Collection 2022-2024
subjects least squares
On-line data collection
pork
Pork quality
prediction
Raman spectral
Raman spectroscopy
screening
sensory properties
spectral analysis
supply balance
Support vector machine
Tenderness prediction
title Predicting aged pork quality using a portable Raman device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20aged%20pork%20quality%20using%20a%20portable%20Raman%20device&rft.jtitle=Meat%20science&rft.au=Santos,%20C.C.&rft.date=2018-11-01&rft.volume=145&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0309-1740&rft.eissn=1873-4138&rft_id=info:doi/10.1016/j.meatsci.2018.05.021&rft_dat=%3Cproquest_cross%3E2116935858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056393407&rft_id=info:pmid/29908446&rfr_iscdi=true