Loading…
Predicting aged pork quality using a portable Raman device
The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were c...
Saved in:
Published in: | Meat science 2018-11, Vol.145, p.79-85 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43 |
container_end_page | 85 |
container_issue | |
container_start_page | 79 |
container_title | Meat science |
container_volume | 145 |
creator | Santos, C.C. Zhao, J. Dong, X. Lonergan, S.M. Huff- Lonergan, E. Outhouse, A. Carlson, K.B. Prusa, K.J. Fedler, C.A. Yu, C. Shackelford, S.D. King, D.A. Wheeler, T.L. |
description | The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations. |
doi_str_mv | 10.1016/j.meatsci.2018.05.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116935858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309174018301876</els_id><sourcerecordid>2116935858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWqs_QZmlmxlvXtPEjYj4AkERXYc0uS2pM52azAj-e1Nb3bq6cPjOufARckKhokDr80XVou2TCxUDqiqQFTC6Q0ZUTXgpKFe7ZAQcdEknAg7IYUoLAKCcqX1ywLQGJUQ9IhfPEX1wfVjOCztHX6y6-F58DLYJ_VcxpJ98HfZ22mDxYlu7LDx-BodHZG9mm4TH2zsmb7c3r9f35ePT3cP11WPpuFZ9KWRdT5WSjDsmqXB66q0VE-CypsgANKdaezbzzDOpheQwo1I5m2OhM8nH5Gyzu4rdx4CpN21IDpvGLrEbkmGU1ppLJdX_KMiaay5gklG5QV3sUoo4M6sYWhu_DAWzNmwWZmvYrA0bkCYbzr3T7Yth2qL_a_0qzcDlBsDs5DNgNHkCly5rjuh647vwz4tv1OCMbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056393407</pqid></control><display><type>article</type><title>Predicting aged pork quality using a portable Raman device</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</creator><creatorcontrib>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</creatorcontrib><description>The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</description><identifier>ISSN: 0309-1740</identifier><identifier>EISSN: 1873-4138</identifier><identifier>DOI: 10.1016/j.meatsci.2018.05.021</identifier><identifier>PMID: 29908446</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>least squares ; On-line data collection ; pork ; Pork quality ; prediction ; Raman spectral ; Raman spectroscopy ; screening ; sensory properties ; spectral analysis ; supply balance ; Support vector machine ; Tenderness prediction</subject><ispartof>Meat science, 2018-11, Vol.145, p.79-85</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</citedby><cites>FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29908446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, C.C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Dong, X.</creatorcontrib><creatorcontrib>Lonergan, S.M.</creatorcontrib><creatorcontrib>Huff- Lonergan, E.</creatorcontrib><creatorcontrib>Outhouse, A.</creatorcontrib><creatorcontrib>Carlson, K.B.</creatorcontrib><creatorcontrib>Prusa, K.J.</creatorcontrib><creatorcontrib>Fedler, C.A.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><creatorcontrib>Shackelford, S.D.</creatorcontrib><creatorcontrib>King, D.A.</creatorcontrib><creatorcontrib>Wheeler, T.L.</creatorcontrib><title>Predicting aged pork quality using a portable Raman device</title><title>Meat science</title><addtitle>Meat Sci</addtitle><description>The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</description><subject>least squares</subject><subject>On-line data collection</subject><subject>pork</subject><subject>Pork quality</subject><subject>prediction</subject><subject>Raman spectral</subject><subject>Raman spectroscopy</subject><subject>screening</subject><subject>sensory properties</subject><subject>spectral analysis</subject><subject>supply balance</subject><subject>Support vector machine</subject><subject>Tenderness prediction</subject><issn>0309-1740</issn><issn>1873-4138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWqs_QZmlmxlvXtPEjYj4AkERXYc0uS2pM52azAj-e1Nb3bq6cPjOufARckKhokDr80XVou2TCxUDqiqQFTC6Q0ZUTXgpKFe7ZAQcdEknAg7IYUoLAKCcqX1ywLQGJUQ9IhfPEX1wfVjOCztHX6y6-F58DLYJ_VcxpJ98HfZ22mDxYlu7LDx-BodHZG9mm4TH2zsmb7c3r9f35ePT3cP11WPpuFZ9KWRdT5WSjDsmqXB66q0VE-CypsgANKdaezbzzDOpheQwo1I5m2OhM8nH5Gyzu4rdx4CpN21IDpvGLrEbkmGU1ppLJdX_KMiaay5gklG5QV3sUoo4M6sYWhu_DAWzNmwWZmvYrA0bkCYbzr3T7Yth2qL_a_0qzcDlBsDs5DNgNHkCly5rjuh647vwz4tv1OCMbg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Santos, C.C.</creator><creator>Zhao, J.</creator><creator>Dong, X.</creator><creator>Lonergan, S.M.</creator><creator>Huff- Lonergan, E.</creator><creator>Outhouse, A.</creator><creator>Carlson, K.B.</creator><creator>Prusa, K.J.</creator><creator>Fedler, C.A.</creator><creator>Yu, C.</creator><creator>Shackelford, S.D.</creator><creator>King, D.A.</creator><creator>Wheeler, T.L.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20181101</creationdate><title>Predicting aged pork quality using a portable Raman device</title><author>Santos, C.C. ; Zhao, J. ; Dong, X. ; Lonergan, S.M. ; Huff- Lonergan, E. ; Outhouse, A. ; Carlson, K.B. ; Prusa, K.J. ; Fedler, C.A. ; Yu, C. ; Shackelford, S.D. ; King, D.A. ; Wheeler, T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>least squares</topic><topic>On-line data collection</topic><topic>pork</topic><topic>Pork quality</topic><topic>prediction</topic><topic>Raman spectral</topic><topic>Raman spectroscopy</topic><topic>screening</topic><topic>sensory properties</topic><topic>spectral analysis</topic><topic>supply balance</topic><topic>Support vector machine</topic><topic>Tenderness prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, C.C.</creatorcontrib><creatorcontrib>Zhao, J.</creatorcontrib><creatorcontrib>Dong, X.</creatorcontrib><creatorcontrib>Lonergan, S.M.</creatorcontrib><creatorcontrib>Huff- Lonergan, E.</creatorcontrib><creatorcontrib>Outhouse, A.</creatorcontrib><creatorcontrib>Carlson, K.B.</creatorcontrib><creatorcontrib>Prusa, K.J.</creatorcontrib><creatorcontrib>Fedler, C.A.</creatorcontrib><creatorcontrib>Yu, C.</creatorcontrib><creatorcontrib>Shackelford, S.D.</creatorcontrib><creatorcontrib>King, D.A.</creatorcontrib><creatorcontrib>Wheeler, T.L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Meat science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, C.C.</au><au>Zhao, J.</au><au>Dong, X.</au><au>Lonergan, S.M.</au><au>Huff- Lonergan, E.</au><au>Outhouse, A.</au><au>Carlson, K.B.</au><au>Prusa, K.J.</au><au>Fedler, C.A.</au><au>Yu, C.</au><au>Shackelford, S.D.</au><au>King, D.A.</au><au>Wheeler, T.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting aged pork quality using a portable Raman device</atitle><jtitle>Meat science</jtitle><addtitle>Meat Sci</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>145</volume><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0309-1740</issn><eissn>1873-4138</eissn><abstract>The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”. The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29908446</pmid><doi>10.1016/j.meatsci.2018.05.021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1740 |
ispartof | Meat science, 2018-11, Vol.145, p.79-85 |
issn | 0309-1740 1873-4138 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116935858 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | least squares On-line data collection pork Pork quality prediction Raman spectral Raman spectroscopy screening sensory properties spectral analysis supply balance Support vector machine Tenderness prediction |
title | Predicting aged pork quality using a portable Raman device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20aged%20pork%20quality%20using%20a%20portable%20Raman%20device&rft.jtitle=Meat%20science&rft.au=Santos,%20C.C.&rft.date=2018-11-01&rft.volume=145&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0309-1740&rft.eissn=1873-4138&rft_id=info:doi/10.1016/j.meatsci.2018.05.021&rft_dat=%3Cproquest_cross%3E2116935858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-4566b88523c2514c9bdaa4703561e20093199d2fd2d2594530f158ca31949aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056393407&rft_id=info:pmid/29908446&rfr_iscdi=true |