Loading…
Seabed Segmentation Using Optimized Statistics of Sonar Textures
In this paper, we propose and compare two supervised algorithms for the segmentation of textured sonar images, with respect to seafloor types. We characterize seafloors by a set of empirical distributions estimated on texture responses to a set of different filters. Moreover, we introduce a novel si...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2009-06, Vol.47 (6), p.1621-1631 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose and compare two supervised algorithms for the segmentation of textured sonar images, with respect to seafloor types. We characterize seafloors by a set of empirical distributions estimated on texture responses to a set of different filters. Moreover, we introduce a novel similarity measure between sonar textures in this feature space. Our similarity measure is defined as a weighted sum of Kullback-Leibler divergences between texture features. The weight setting is twofold. First, each filter is weighted according to its discrimination power: The computation of these weights are issued from a margin maximization criterion. Second, an additional weight, evaluated as an angular distance between the incidence angles of the compared texture samples, is considered to take into account sonar-image acquisition process that leads to a variability of the backscattered value and of the texture aspect with the incidence-angle range. A Bayesian framework is used in the first algorithm where the conditional likelihoods are expressed using the proposed similarity measure between local pixel statistics and the seafloor prototype statistics. The second method is based on a variational framework as the minimization of a region-based functional that involves the similarity between global-region texture-based statistics and the predefined prototypes. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2008.2006362 |