Loading…
High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics
Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to co...
Saved in:
Published in: | ACS applied materials & interfaces 2018-10, Vol.10 (43), p.36834-36840 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73 |
container_end_page | 36840 |
container_issue | 43 |
container_start_page | 36834 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Zhang, Lushuai Viola, Wesley Andrew, Trisha L |
description | Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device. |
doi_str_mv | 10.1021/acsami.8b08408 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117154385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117154385</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRrFa3LmWWIk2dSSbT6VLa2hYqCiouw8vkpU7JlzMJ0n9vQmp3rt5bnHPhXkJuOBtz5vMH0A5yM1YxU4KpE3LBp0J4yg_90-MvxIBcOrdjTAY-C8_JIGD-NBSSXZBqZbZfdFGg3e7pHAtn6v2IvjUVWm-OaWlziDMc0SXYHIvaWxc1bi3UmNBno23pOlJDBdrUpXW0Nehr-YPWFFv6iWA7nS4y1LUtC6PdFTlLIXN4fbhD8vG0eJ-tvM3Lcj173HgQBKz24qlOZCy0FkIxhaEElUpMtJ5ImIDP2mqxD1LLlAND3fZHlgZCSS4CEepJMCR3fW5ly-8GXR3lxmnMMiiwbFzkcz7hoQhU2KLjHu36OItpVFmTg91HnEXdylG_cnRYuRVuD9lNnGNyxP9mbYH7HmjFaFc2tmir_pf2CycMiRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117154385</pqid></control><display><type>article</type><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</creator><creatorcontrib>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</creatorcontrib><description>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b08408</identifier><identifier>PMID: 30295460</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-10, Vol.10 (43), p.36834-36840</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</citedby><cites>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</cites><orcidid>0000-0002-8193-2912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30295460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lushuai</creatorcontrib><creatorcontrib>Viola, Wesley</creatorcontrib><creatorcontrib>Andrew, Trisha L</creatorcontrib><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AURQdRrFa3LmWWIk2dSSbT6VLa2hYqCiouw8vkpU7JlzMJ0n9vQmp3rt5bnHPhXkJuOBtz5vMH0A5yM1YxU4KpE3LBp0J4yg_90-MvxIBcOrdjTAY-C8_JIGD-NBSSXZBqZbZfdFGg3e7pHAtn6v2IvjUVWm-OaWlziDMc0SXYHIvaWxc1bi3UmNBno23pOlJDBdrUpXW0Nehr-YPWFFv6iWA7nS4y1LUtC6PdFTlLIXN4fbhD8vG0eJ-tvM3Lcj173HgQBKz24qlOZCy0FkIxhaEElUpMtJ5ImIDP2mqxD1LLlAND3fZHlgZCSS4CEepJMCR3fW5ly-8GXR3lxmnMMiiwbFzkcz7hoQhU2KLjHu36OItpVFmTg91HnEXdylG_cnRYuRVuD9lNnGNyxP9mbYH7HmjFaFc2tmir_pf2CycMiRg</recordid><startdate>20181031</startdate><enddate>20181031</enddate><creator>Zhang, Lushuai</creator><creator>Viola, Wesley</creator><creator>Andrew, Trisha L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8193-2912</orcidid></search><sort><creationdate>20181031</creationdate><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><author>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lushuai</creatorcontrib><creatorcontrib>Viola, Wesley</creatorcontrib><creatorcontrib>Andrew, Trisha L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lushuai</au><au>Viola, Wesley</au><au>Andrew, Trisha L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-10-31</date><risdate>2018</risdate><volume>10</volume><issue>43</issue><spage>36834</spage><epage>36840</epage><pages>36834-36840</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30295460</pmid><doi>10.1021/acsami.8b08408</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8193-2912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-10, Vol.10 (43), p.36834-36840 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2117154385 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density,%20Super-Deformable,%20Garment-Integrated%20Microsupercapacitors%20for%20Powering%20Wearable%20Electronics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Lushuai&rft.date=2018-10-31&rft.volume=10&rft.issue=43&rft.spage=36834&rft.epage=36840&rft.pages=36834-36840&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b08408&rft_dat=%3Cproquest_cross%3E2117154385%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117154385&rft_id=info:pmid/30295460&rfr_iscdi=true |