Loading…

High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics

Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to co...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-10, Vol.10 (43), p.36834-36840
Main Authors: Zhang, Lushuai, Viola, Wesley, Andrew, Trisha L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73
cites cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73
container_end_page 36840
container_issue 43
container_start_page 36834
container_title ACS applied materials & interfaces
container_volume 10
creator Zhang, Lushuai
Viola, Wesley
Andrew, Trisha L
description Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.
doi_str_mv 10.1021/acsami.8b08408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117154385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117154385</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRrFa3LmWWIk2dSSbT6VLa2hYqCiouw8vkpU7JlzMJ0n9vQmp3rt5bnHPhXkJuOBtz5vMH0A5yM1YxU4KpE3LBp0J4yg_90-MvxIBcOrdjTAY-C8_JIGD-NBSSXZBqZbZfdFGg3e7pHAtn6v2IvjUVWm-OaWlziDMc0SXYHIvaWxc1bi3UmNBno23pOlJDBdrUpXW0Nehr-YPWFFv6iWA7nS4y1LUtC6PdFTlLIXN4fbhD8vG0eJ-tvM3Lcj173HgQBKz24qlOZCy0FkIxhaEElUpMtJ5ImIDP2mqxD1LLlAND3fZHlgZCSS4CEepJMCR3fW5ly-8GXR3lxmnMMiiwbFzkcz7hoQhU2KLjHu36OItpVFmTg91HnEXdylG_cnRYuRVuD9lNnGNyxP9mbYH7HmjFaFc2tmir_pf2CycMiRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117154385</pqid></control><display><type>article</type><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</creator><creatorcontrib>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</creatorcontrib><description>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b08408</identifier><identifier>PMID: 30295460</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-10, Vol.10 (43), p.36834-36840</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</citedby><cites>FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</cites><orcidid>0000-0002-8193-2912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30295460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lushuai</creatorcontrib><creatorcontrib>Viola, Wesley</creatorcontrib><creatorcontrib>Andrew, Trisha L</creatorcontrib><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AURQdRrFa3LmWWIk2dSSbT6VLa2hYqCiouw8vkpU7JlzMJ0n9vQmp3rt5bnHPhXkJuOBtz5vMH0A5yM1YxU4KpE3LBp0J4yg_90-MvxIBcOrdjTAY-C8_JIGD-NBSSXZBqZbZfdFGg3e7pHAtn6v2IvjUVWm-OaWlziDMc0SXYHIvaWxc1bi3UmNBno23pOlJDBdrUpXW0Nehr-YPWFFv6iWA7nS4y1LUtC6PdFTlLIXN4fbhD8vG0eJ-tvM3Lcj173HgQBKz24qlOZCy0FkIxhaEElUpMtJ5ImIDP2mqxD1LLlAND3fZHlgZCSS4CEepJMCR3fW5ly-8GXR3lxmnMMiiwbFzkcz7hoQhU2KLjHu36OItpVFmTg91HnEXdylG_cnRYuRVuD9lNnGNyxP9mbYH7HmjFaFc2tmir_pf2CycMiRg</recordid><startdate>20181031</startdate><enddate>20181031</enddate><creator>Zhang, Lushuai</creator><creator>Viola, Wesley</creator><creator>Andrew, Trisha L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8193-2912</orcidid></search><sort><creationdate>20181031</creationdate><title>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</title><author>Zhang, Lushuai ; Viola, Wesley ; Andrew, Trisha L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lushuai</creatorcontrib><creatorcontrib>Viola, Wesley</creatorcontrib><creatorcontrib>Andrew, Trisha L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lushuai</au><au>Viola, Wesley</au><au>Andrew, Trisha L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-10-31</date><risdate>2018</risdate><volume>10</volume><issue>43</issue><spage>36834</spage><epage>36840</epage><pages>36834-36840</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric’s pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 μW h/cm2 with a polymer gel electrolyte, and an energy density of 34 μW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30295460</pmid><doi>10.1021/acsami.8b08408</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8193-2912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-10, Vol.10 (43), p.36834-36840
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2117154385
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density,%20Super-Deformable,%20Garment-Integrated%20Microsupercapacitors%20for%20Powering%20Wearable%20Electronics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Lushuai&rft.date=2018-10-31&rft.volume=10&rft.issue=43&rft.spage=36834&rft.epage=36840&rft.pages=36834-36840&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b08408&rft_dat=%3Cproquest_cross%3E2117154385%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-b9cd6b4cc44808e56a8f6edcc76a7a20194b2a6c6f1a0ec8b0e0f348614345c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117154385&rft_id=info:pmid/30295460&rfr_iscdi=true