Loading…

Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed a...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2019-01, Vol.214, p.743-753
Main Authors: Dieguez-Alonso, Alba, Anca-Couce, Andrés, Frišták, Vladimír, Moreno-Jiménez, Eduardo, Bacher, Markus, Bucheli, Thomas D., Cimò, Giulia, Conte, Pellegrino, Hagemann, Nikolas, Haller, Andreas, Hilber, Isabel, Husson, Olivier, Kammann, Claudia I., Kienzl, Norbert, Leifeld, Jens, Rosenau, Thomas, Soja, Gerhard, Schmidt, Hans-Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3
cites cdi_FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3
container_end_page 753
container_issue
container_start_page 743
container_title Chemosphere (Oxford)
container_volume 214
creator Dieguez-Alonso, Alba
Anca-Couce, Andrés
Frišták, Vladimír
Moreno-Jiménez, Eduardo
Bacher, Markus
Bucheli, Thomas D.
Cimò, Giulia
Conte, Pellegrino
Hagemann, Nikolas
Haller, Andreas
Hilber, Isabel
Husson, Olivier
Kammann, Claudia I.
Kienzl, Norbert
Leifeld, Jens
Rosenau, Thomas
Soja, Gerhard
Schmidt, Hans-Peter
description Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g−1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g−1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars. •Biomass metal-blending prior to pyrolysis as tool to develop designer biochars.•Metal-blending leads to the formation of biochar-metal composites on the biochar surface.•Biochar microporosity, corrected by the C content, is increased with metal-blending.•Very different values of redox and Zeta potential are observed for the metal-enhanced biochars.•Metal-enhanced biochars show higher oxyanion (PO43−, AsO43−) adsorption capacity.
doi_str_mv 10.1016/j.chemosphere.2018.09.091
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117156800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653518317466</els_id><sourcerecordid>2117156800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3</originalsourceid><addsrcrecordid>eNqNkE2P1DAMhiMEYmcX_gIKNy4d8jFtE25olo-VVuIC58hN3WmGaVPizC4r_jwZzYI4ItmyJT-vLb-MvZZiLYVs3u7XfsQp0jJiwrUS0qyFLSGfsJU0ra2ksuYpWwmxqaum1vUFuyTaC1HEtX3OLrRQtqRZsV_XSGE3h3nHuxD9CIkvKS6YckDieUzxuBtLRd4dcO5PXBxO6AREfEDsKUf_nd-HPPIJMxzoHb-ZFvCZx5nHnw8whzgTh55iWnLpeYcj3IWYXrBnQ-Hx5WO9Yt8-fvi6_Vzdfvl0s31_W3ndtrnqPSjToGl1Uzey3ijbKWPAeu0HrQSIXpe5bMu0ER4Qug1IqHFAaKzSg75ib857y2c_jkjZTYE8Hg4wYzySU1K2sm6MEAW1Z9SnSJRwcEsKE6QHJ4U7ee_27h_v3cl7J2wJWbSvHs8cuwn7v8o_ZhdgewawPHsXMDnyAWePfUjos-tj-I8zvwHJf55h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117156800</pqid></control><display><type>article</type><title>Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior</title><source>ScienceDirect Journals</source><creator>Dieguez-Alonso, Alba ; Anca-Couce, Andrés ; Frišták, Vladimír ; Moreno-Jiménez, Eduardo ; Bacher, Markus ; Bucheli, Thomas D. ; Cimò, Giulia ; Conte, Pellegrino ; Hagemann, Nikolas ; Haller, Andreas ; Hilber, Isabel ; Husson, Olivier ; Kammann, Claudia I. ; Kienzl, Norbert ; Leifeld, Jens ; Rosenau, Thomas ; Soja, Gerhard ; Schmidt, Hans-Peter</creator><creatorcontrib>Dieguez-Alonso, Alba ; Anca-Couce, Andrés ; Frišták, Vladimír ; Moreno-Jiménez, Eduardo ; Bacher, Markus ; Bucheli, Thomas D. ; Cimò, Giulia ; Conte, Pellegrino ; Hagemann, Nikolas ; Haller, Andreas ; Hilber, Isabel ; Husson, Olivier ; Kammann, Claudia I. ; Kienzl, Norbert ; Leifeld, Jens ; Rosenau, Thomas ; Soja, Gerhard ; Schmidt, Hans-Peter</creatorcontrib><description>Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g−1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g−1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars. •Biomass metal-blending prior to pyrolysis as tool to develop designer biochars.•Metal-blending leads to the formation of biochar-metal composites on the biochar surface.•Biochar microporosity, corrected by the C content, is increased with metal-blending.•Very different values of redox and Zeta potential are observed for the metal-enhanced biochars.•Metal-enhanced biochars show higher oxyanion (PO43−, AsO43−) adsorption capacity.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2018.09.091</identifier><identifier>PMID: 30293028</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adsorption ; Biomass ; Charcoal - chemistry ; Designer biochar ; Metal-blending ; Metals - chemistry ; Oxyanion ; Physico-chemical ; Pore size distribution</subject><ispartof>Chemosphere (Oxford), 2019-01, Vol.214, p.743-753</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3</citedby><cites>FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3</cites><orcidid>0000-0002-4020-6594 ; 0000-0001-8404-6089 ; 0000-0002-2125-1197 ; 0000-0002-2211-1225 ; 0000-0001-9261-0698 ; 0000-0001-9971-3104 ; 0000-0002-7245-9852 ; 0000-0002-1912-3823 ; 0000-0001-7391-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30293028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieguez-Alonso, Alba</creatorcontrib><creatorcontrib>Anca-Couce, Andrés</creatorcontrib><creatorcontrib>Frišták, Vladimír</creatorcontrib><creatorcontrib>Moreno-Jiménez, Eduardo</creatorcontrib><creatorcontrib>Bacher, Markus</creatorcontrib><creatorcontrib>Bucheli, Thomas D.</creatorcontrib><creatorcontrib>Cimò, Giulia</creatorcontrib><creatorcontrib>Conte, Pellegrino</creatorcontrib><creatorcontrib>Hagemann, Nikolas</creatorcontrib><creatorcontrib>Haller, Andreas</creatorcontrib><creatorcontrib>Hilber, Isabel</creatorcontrib><creatorcontrib>Husson, Olivier</creatorcontrib><creatorcontrib>Kammann, Claudia I.</creatorcontrib><creatorcontrib>Kienzl, Norbert</creatorcontrib><creatorcontrib>Leifeld, Jens</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><creatorcontrib>Soja, Gerhard</creatorcontrib><creatorcontrib>Schmidt, Hans-Peter</creatorcontrib><title>Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g−1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g−1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars. •Biomass metal-blending prior to pyrolysis as tool to develop designer biochars.•Metal-blending leads to the formation of biochar-metal composites on the biochar surface.•Biochar microporosity, corrected by the C content, is increased with metal-blending.•Very different values of redox and Zeta potential are observed for the metal-enhanced biochars.•Metal-enhanced biochars show higher oxyanion (PO43−, AsO43−) adsorption capacity.</description><subject>Adsorption</subject><subject>Biomass</subject><subject>Charcoal - chemistry</subject><subject>Designer biochar</subject><subject>Metal-blending</subject><subject>Metals - chemistry</subject><subject>Oxyanion</subject><subject>Physico-chemical</subject><subject>Pore size distribution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE2P1DAMhiMEYmcX_gIKNy4d8jFtE25olo-VVuIC58hN3WmGaVPizC4r_jwZzYI4ItmyJT-vLb-MvZZiLYVs3u7XfsQp0jJiwrUS0qyFLSGfsJU0ra2ksuYpWwmxqaum1vUFuyTaC1HEtX3OLrRQtqRZsV_XSGE3h3nHuxD9CIkvKS6YckDieUzxuBtLRd4dcO5PXBxO6AREfEDsKUf_nd-HPPIJMxzoHb-ZFvCZx5nHnw8whzgTh55iWnLpeYcj3IWYXrBnQ-Hx5WO9Yt8-fvi6_Vzdfvl0s31_W3ndtrnqPSjToGl1Uzey3ijbKWPAeu0HrQSIXpe5bMu0ER4Qug1IqHFAaKzSg75ib857y2c_jkjZTYE8Hg4wYzySU1K2sm6MEAW1Z9SnSJRwcEsKE6QHJ4U7ee_27h_v3cl7J2wJWbSvHs8cuwn7v8o_ZhdgewawPHsXMDnyAWePfUjos-tj-I8zvwHJf55h</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Dieguez-Alonso, Alba</creator><creator>Anca-Couce, Andrés</creator><creator>Frišták, Vladimír</creator><creator>Moreno-Jiménez, Eduardo</creator><creator>Bacher, Markus</creator><creator>Bucheli, Thomas D.</creator><creator>Cimò, Giulia</creator><creator>Conte, Pellegrino</creator><creator>Hagemann, Nikolas</creator><creator>Haller, Andreas</creator><creator>Hilber, Isabel</creator><creator>Husson, Olivier</creator><creator>Kammann, Claudia I.</creator><creator>Kienzl, Norbert</creator><creator>Leifeld, Jens</creator><creator>Rosenau, Thomas</creator><creator>Soja, Gerhard</creator><creator>Schmidt, Hans-Peter</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4020-6594</orcidid><orcidid>https://orcid.org/0000-0001-8404-6089</orcidid><orcidid>https://orcid.org/0000-0002-2125-1197</orcidid><orcidid>https://orcid.org/0000-0002-2211-1225</orcidid><orcidid>https://orcid.org/0000-0001-9261-0698</orcidid><orcidid>https://orcid.org/0000-0001-9971-3104</orcidid><orcidid>https://orcid.org/0000-0002-7245-9852</orcidid><orcidid>https://orcid.org/0000-0002-1912-3823</orcidid><orcidid>https://orcid.org/0000-0001-7391-4899</orcidid></search><sort><creationdate>201901</creationdate><title>Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior</title><author>Dieguez-Alonso, Alba ; Anca-Couce, Andrés ; Frišták, Vladimír ; Moreno-Jiménez, Eduardo ; Bacher, Markus ; Bucheli, Thomas D. ; Cimò, Giulia ; Conte, Pellegrino ; Hagemann, Nikolas ; Haller, Andreas ; Hilber, Isabel ; Husson, Olivier ; Kammann, Claudia I. ; Kienzl, Norbert ; Leifeld, Jens ; Rosenau, Thomas ; Soja, Gerhard ; Schmidt, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Biomass</topic><topic>Charcoal - chemistry</topic><topic>Designer biochar</topic><topic>Metal-blending</topic><topic>Metals - chemistry</topic><topic>Oxyanion</topic><topic>Physico-chemical</topic><topic>Pore size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieguez-Alonso, Alba</creatorcontrib><creatorcontrib>Anca-Couce, Andrés</creatorcontrib><creatorcontrib>Frišták, Vladimír</creatorcontrib><creatorcontrib>Moreno-Jiménez, Eduardo</creatorcontrib><creatorcontrib>Bacher, Markus</creatorcontrib><creatorcontrib>Bucheli, Thomas D.</creatorcontrib><creatorcontrib>Cimò, Giulia</creatorcontrib><creatorcontrib>Conte, Pellegrino</creatorcontrib><creatorcontrib>Hagemann, Nikolas</creatorcontrib><creatorcontrib>Haller, Andreas</creatorcontrib><creatorcontrib>Hilber, Isabel</creatorcontrib><creatorcontrib>Husson, Olivier</creatorcontrib><creatorcontrib>Kammann, Claudia I.</creatorcontrib><creatorcontrib>Kienzl, Norbert</creatorcontrib><creatorcontrib>Leifeld, Jens</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><creatorcontrib>Soja, Gerhard</creatorcontrib><creatorcontrib>Schmidt, Hans-Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieguez-Alonso, Alba</au><au>Anca-Couce, Andrés</au><au>Frišták, Vladimír</au><au>Moreno-Jiménez, Eduardo</au><au>Bacher, Markus</au><au>Bucheli, Thomas D.</au><au>Cimò, Giulia</au><au>Conte, Pellegrino</au><au>Hagemann, Nikolas</au><au>Haller, Andreas</au><au>Hilber, Isabel</au><au>Husson, Olivier</au><au>Kammann, Claudia I.</au><au>Kienzl, Norbert</au><au>Leifeld, Jens</au><au>Rosenau, Thomas</au><au>Soja, Gerhard</au><au>Schmidt, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2019-01</date><risdate>2019</risdate><volume>214</volume><spage>743</spage><epage>753</epage><pages>743-753</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g−1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g−1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars. •Biomass metal-blending prior to pyrolysis as tool to develop designer biochars.•Metal-blending leads to the formation of biochar-metal composites on the biochar surface.•Biochar microporosity, corrected by the C content, is increased with metal-blending.•Very different values of redox and Zeta potential are observed for the metal-enhanced biochars.•Metal-enhanced biochars show higher oxyanion (PO43−, AsO43−) adsorption capacity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30293028</pmid><doi>10.1016/j.chemosphere.2018.09.091</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4020-6594</orcidid><orcidid>https://orcid.org/0000-0001-8404-6089</orcidid><orcidid>https://orcid.org/0000-0002-2125-1197</orcidid><orcidid>https://orcid.org/0000-0002-2211-1225</orcidid><orcidid>https://orcid.org/0000-0001-9261-0698</orcidid><orcidid>https://orcid.org/0000-0001-9971-3104</orcidid><orcidid>https://orcid.org/0000-0002-7245-9852</orcidid><orcidid>https://orcid.org/0000-0002-1912-3823</orcidid><orcidid>https://orcid.org/0000-0001-7391-4899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2019-01, Vol.214, p.743-753
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2117156800
source ScienceDirect Journals
subjects Adsorption
Biomass
Charcoal - chemistry
Designer biochar
Metal-blending
Metals - chemistry
Oxyanion
Physico-chemical
Pore size distribution
title Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20biochar%20properties%20through%20the%20blending%20of%20biomass%20feedstock%20with%20metals:%20Impact%20on%20oxyanions%20adsorption%20behavior&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Dieguez-Alonso,%20Alba&rft.date=2019-01&rft.volume=214&rft.spage=743&rft.epage=753&rft.pages=743-753&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2018.09.091&rft_dat=%3Cproquest_cross%3E2117156800%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-dca286e87365615429b288a9c3cf320a0d32861765660caeab4a1a5efea6923f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117156800&rft_id=info:pmid/30293028&rfr_iscdi=true