Loading…

Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels

[Display omitted] •Replacement of KOH by Tris buffer to adjust the pH of the sol resulted in a short gelation and in transparent hydrogels.•Increased precursor concentrations reduced gelation times, i.e. reduced time until nutrients can be supplied.•Investigated hydrogels exhibit a 10 times lower st...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2019-01, Vol.173, p.233-241
Main Authors: Homburg, Sarah Vanessa, Venkanna, Deepak, Kraushaar, Konstantin, Kruse, Olaf, Kroke, Edwin, Patel, Anant V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723
cites cdi_FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723
container_end_page 241
container_issue
container_start_page 233
container_title Colloids and surfaces, B, Biointerfaces
container_volume 173
creator Homburg, Sarah Vanessa
Venkanna, Deepak
Kraushaar, Konstantin
Kruse, Olaf
Kroke, Edwin
Patel, Anant V.
description [Display omitted] •Replacement of KOH by Tris buffer to adjust the pH of the sol resulted in a short gelation and in transparent hydrogels.•Increased precursor concentrations reduced gelation times, i.e. reduced time until nutrients can be supplied.•Investigated hydrogels exhibit a 10 times lower stiffness than those in previous reports.•Addition of chitosan to the sol improved abrasion resistance. At the same time, a low absorption was maintained.•Entrapped microalga C. reinhardtii remained photosynthetically active and grew in this artificial environment. In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04–4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70–85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 ± 0.01 d−1, similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.
doi_str_mv 10.1016/j.colsurfb.2018.09.075
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117822715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776518306866</els_id><sourcerecordid>2117822715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723</originalsourceid><addsrcrecordid>eNqFkMtu2zAQRYmgRey4-QWDy26kDB8SpV0LI2kDGMjGXRN8jGwakuiQcgv_fRU46bar2Zw7d-YQsmZQMmD1w7F0sc_n1NmSA2tKaEtQ1Q1ZskaJQopafSJLaLkqlKqrBbnL-QgAXDJ1SxYCBEDD2yXZPY5TMqcBx4ma0dN9in-mA40d3Rx6M1x8HOJoMk0YxoNJfgqBhpHaEF0cTmYKtkeaQx-coYeLT3GPff5CPnemz3j_Plfk19PjbvOz2L78eN583xZOQjUV2Ip6vtQwC042jbRt19QepYDKqIrVgEpKAOmtlSgrUUkrsMb5XWa4U1ysyNfr3lOKr2fMkx5Cdtj3ZsR4zpozphrOFatmtL6iLsWcE3b6lMJg0kUz0G9G9VF_GNVvRjW0ejY6B9fvHWc7oP8X-1A4A9-uwPw4_g6YdHYBR4c-JHST9jH8r-Mv0beLOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117822715</pqid></control><display><type>article</type><title>Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Homburg, Sarah Vanessa ; Venkanna, Deepak ; Kraushaar, Konstantin ; Kruse, Olaf ; Kroke, Edwin ; Patel, Anant V.</creator><creatorcontrib>Homburg, Sarah Vanessa ; Venkanna, Deepak ; Kraushaar, Konstantin ; Kruse, Olaf ; Kroke, Edwin ; Patel, Anant V.</creatorcontrib><description>[Display omitted] •Replacement of KOH by Tris buffer to adjust the pH of the sol resulted in a short gelation and in transparent hydrogels.•Increased precursor concentrations reduced gelation times, i.e. reduced time until nutrients can be supplied.•Investigated hydrogels exhibit a 10 times lower stiffness than those in previous reports.•Addition of chitosan to the sol improved abrasion resistance. At the same time, a low absorption was maintained.•Entrapped microalga C. reinhardtii remained photosynthetically active and grew in this artificial environment. In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04–4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70–85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 ± 0.01 d−1, similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2018.09.075</identifier><identifier>PMID: 30300829</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alginates - chemistry ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Buffers ; Cells, Immobilized - cytology ; Cells, Immobilized - drug effects ; Chitosan - chemistry ; Chlamydomonas reinhardtii - cytology ; Chlamydomonas reinhardtii - drug effects ; Chlamydomonas reinhardtii - growth &amp; development ; Elastic Modulus ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mechanical stability ; Microalgae ; Phosphates - chemistry ; Photosynthesis - drug effects ; Photosynthetic activity ; Potassium Compounds - chemistry ; Silica hydrogels ; Silicon Dioxide - chemistry ; Transparency ; Tromethamine - chemistry</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.233-241</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723</citedby><cites>FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723</cites><orcidid>0000-0003-1771-407X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30300829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Homburg, Sarah Vanessa</creatorcontrib><creatorcontrib>Venkanna, Deepak</creatorcontrib><creatorcontrib>Kraushaar, Konstantin</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><creatorcontrib>Kroke, Edwin</creatorcontrib><creatorcontrib>Patel, Anant V.</creatorcontrib><title>Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] •Replacement of KOH by Tris buffer to adjust the pH of the sol resulted in a short gelation and in transparent hydrogels.•Increased precursor concentrations reduced gelation times, i.e. reduced time until nutrients can be supplied.•Investigated hydrogels exhibit a 10 times lower stiffness than those in previous reports.•Addition of chitosan to the sol improved abrasion resistance. At the same time, a low absorption was maintained.•Entrapped microalga C. reinhardtii remained photosynthetically active and grew in this artificial environment. In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04–4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70–85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 ± 0.01 d−1, similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.</description><subject>Alginates - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Buffers</subject><subject>Cells, Immobilized - cytology</subject><subject>Cells, Immobilized - drug effects</subject><subject>Chitosan - chemistry</subject><subject>Chlamydomonas reinhardtii - cytology</subject><subject>Chlamydomonas reinhardtii - drug effects</subject><subject>Chlamydomonas reinhardtii - growth &amp; development</subject><subject>Elastic Modulus</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mechanical stability</subject><subject>Microalgae</subject><subject>Phosphates - chemistry</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthetic activity</subject><subject>Potassium Compounds - chemistry</subject><subject>Silica hydrogels</subject><subject>Silicon Dioxide - chemistry</subject><subject>Transparency</subject><subject>Tromethamine - chemistry</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu2zAQRYmgRey4-QWDy26kDB8SpV0LI2kDGMjGXRN8jGwakuiQcgv_fRU46bar2Zw7d-YQsmZQMmD1w7F0sc_n1NmSA2tKaEtQ1Q1ZskaJQopafSJLaLkqlKqrBbnL-QgAXDJ1SxYCBEDD2yXZPY5TMqcBx4ma0dN9in-mA40d3Rx6M1x8HOJoMk0YxoNJfgqBhpHaEF0cTmYKtkeaQx-coYeLT3GPff5CPnemz3j_Plfk19PjbvOz2L78eN583xZOQjUV2Ip6vtQwC042jbRt19QepYDKqIrVgEpKAOmtlSgrUUkrsMb5XWa4U1ysyNfr3lOKr2fMkx5Cdtj3ZsR4zpozphrOFatmtL6iLsWcE3b6lMJg0kUz0G9G9VF_GNVvRjW0ejY6B9fvHWc7oP8X-1A4A9-uwPw4_g6YdHYBR4c-JHST9jH8r-Mv0beLOg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Homburg, Sarah Vanessa</creator><creator>Venkanna, Deepak</creator><creator>Kraushaar, Konstantin</creator><creator>Kruse, Olaf</creator><creator>Kroke, Edwin</creator><creator>Patel, Anant V.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1771-407X</orcidid></search><sort><creationdate>20190101</creationdate><title>Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels</title><author>Homburg, Sarah Vanessa ; Venkanna, Deepak ; Kraushaar, Konstantin ; Kruse, Olaf ; Kroke, Edwin ; Patel, Anant V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alginates - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Buffers</topic><topic>Cells, Immobilized - cytology</topic><topic>Cells, Immobilized - drug effects</topic><topic>Chitosan - chemistry</topic><topic>Chlamydomonas reinhardtii - cytology</topic><topic>Chlamydomonas reinhardtii - drug effects</topic><topic>Chlamydomonas reinhardtii - growth &amp; development</topic><topic>Elastic Modulus</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mechanical stability</topic><topic>Microalgae</topic><topic>Phosphates - chemistry</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthetic activity</topic><topic>Potassium Compounds - chemistry</topic><topic>Silica hydrogels</topic><topic>Silicon Dioxide - chemistry</topic><topic>Transparency</topic><topic>Tromethamine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homburg, Sarah Vanessa</creatorcontrib><creatorcontrib>Venkanna, Deepak</creatorcontrib><creatorcontrib>Kraushaar, Konstantin</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><creatorcontrib>Kroke, Edwin</creatorcontrib><creatorcontrib>Patel, Anant V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homburg, Sarah Vanessa</au><au>Venkanna, Deepak</au><au>Kraushaar, Konstantin</au><au>Kruse, Olaf</au><au>Kroke, Edwin</au><au>Patel, Anant V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>173</volume><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] •Replacement of KOH by Tris buffer to adjust the pH of the sol resulted in a short gelation and in transparent hydrogels.•Increased precursor concentrations reduced gelation times, i.e. reduced time until nutrients can be supplied.•Investigated hydrogels exhibit a 10 times lower stiffness than those in previous reports.•Addition of chitosan to the sol improved abrasion resistance. At the same time, a low absorption was maintained.•Entrapped microalga C. reinhardtii remained photosynthetically active and grew in this artificial environment. In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04–4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70–85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 ± 0.01 d−1, similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30300829</pmid><doi>10.1016/j.colsurfb.2018.09.075</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1771-407X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.233-241
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_2117822715
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Alginates - chemistry
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Buffers
Cells, Immobilized - cytology
Cells, Immobilized - drug effects
Chitosan - chemistry
Chlamydomonas reinhardtii - cytology
Chlamydomonas reinhardtii - drug effects
Chlamydomonas reinhardtii - growth & development
Elastic Modulus
Hydrogels - chemistry
Hydrogels - pharmacology
Mechanical stability
Microalgae
Phosphates - chemistry
Photosynthesis - drug effects
Photosynthetic activity
Potassium Compounds - chemistry
Silica hydrogels
Silicon Dioxide - chemistry
Transparency
Tromethamine - chemistry
title Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entrapment%20and%20growth%20of%20Chlamydomonas%20reinhardtii%20in%20biocompatible%20silica%20hydrogels&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Homburg,%20Sarah%20Vanessa&rft.date=2019-01-01&rft.volume=173&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2018.09.075&rft_dat=%3Cproquest_cross%3E2117822715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-e936436a1b0c4884b9f86de4305a75160e744004dbb4e45354b3e6e0181a2c723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117822715&rft_id=info:pmid/30300829&rfr_iscdi=true