Loading…
3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors
High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-11, Vol.14 (45), p.e1801857-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23 |
container_end_page | n/a |
container_issue | 45 |
container_start_page | e1801857 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Heuser, Steffen Yang, Nianjun Hof, Felix Schulte, Anna Schönherr, Holger Jiang, Xin |
description | High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6
3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications.
High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity. |
doi_str_mv | 10.1002/smll.201801857 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118314591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118314591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMo1q-rR1nw4mXbmU032Ryl2laoH1A9L9ls1qbsl0kX6c2f4G_0lxipVvAiDMwMPPMyPIScIvQRIBq4qiz7EWDiK-Y75AAZ0pAlkdjdzgg9cujcEoBiNOT7pEeBAucgDsgTvQro6OPtfW5Gg4mV7ULXOpiuM2vy4E7WTSkrU8uVDsamrFxQNDaYmueFv3jQ1m-VrJUO5l2rrZKtVGbVWHdM9gpZOn3y3Y_I0_j6cTQNZ_eTm9HlLFRDjHiIXCQCkkRpECA5kyIrGA5zyngsk0zHLEfGADCWIDCXuS6KgrE8y5SKYxXRI3KxyW1t89Jpt0or45QuS1nrpnNphJhQHMYCPXr-B102na39d56ikPAIQHiqv6GUbZyzukhbaypp1ylC-iU8_RKeboX7g7Pv2C6rdL7Ffwx7QGyAV1Pq9T9x6fx2NvsN_wQiOI1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130872009</pqid></control><display><type>article</type><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</creator><creatorcontrib>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</creatorcontrib><description>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6
3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications.
High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201801857</identifier><identifier>PMID: 30307709</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Capacitance ; Capacitors ; Chemical vapor deposition ; Electrical resistivity ; Electrode materials ; Electrodes ; energy density ; Energy storage ; Graphene ; high‐performance supercapacitors ; Microwave plasmas ; nanolaminate structures ; Nanotechnology ; Organic chemistry ; Silicon carbide ; Supercapacitors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-11, Vol.14 (45), p.e1801857-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</citedby><cites>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</cites><orcidid>0000-0002-5558-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30307709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heuser, Steffen</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Hof, Felix</creatorcontrib><creatorcontrib>Schulte, Anna</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6
3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications.
High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</description><subject>Aqueous solutions</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Chemical vapor deposition</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>energy density</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>high‐performance supercapacitors</subject><subject>Microwave plasmas</subject><subject>nanolaminate structures</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Silicon carbide</subject><subject>Supercapacitors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMo1q-rR1nw4mXbmU032Ryl2laoH1A9L9ls1qbsl0kX6c2f4G_0lxipVvAiDMwMPPMyPIScIvQRIBq4qiz7EWDiK-Y75AAZ0pAlkdjdzgg9cujcEoBiNOT7pEeBAucgDsgTvQro6OPtfW5Gg4mV7ULXOpiuM2vy4E7WTSkrU8uVDsamrFxQNDaYmueFv3jQ1m-VrJUO5l2rrZKtVGbVWHdM9gpZOn3y3Y_I0_j6cTQNZ_eTm9HlLFRDjHiIXCQCkkRpECA5kyIrGA5zyngsk0zHLEfGADCWIDCXuS6KgrE8y5SKYxXRI3KxyW1t89Jpt0or45QuS1nrpnNphJhQHMYCPXr-B102na39d56ikPAIQHiqv6GUbZyzukhbaypp1ylC-iU8_RKeboX7g7Pv2C6rdL7Ffwx7QGyAV1Pq9T9x6fx2NvsN_wQiOI1p</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Heuser, Steffen</creator><creator>Yang, Nianjun</creator><creator>Hof, Felix</creator><creator>Schulte, Anna</creator><creator>Schönherr, Holger</creator><creator>Jiang, Xin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></search><sort><creationdate>201811</creationdate><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><author>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aqueous solutions</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Chemical vapor deposition</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>energy density</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>high‐performance supercapacitors</topic><topic>Microwave plasmas</topic><topic>nanolaminate structures</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Silicon carbide</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuser, Steffen</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Hof, Felix</creatorcontrib><creatorcontrib>Schulte, Anna</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuser, Steffen</au><au>Yang, Nianjun</au><au>Hof, Felix</au><au>Schulte, Anna</au><au>Schönherr, Holger</au><au>Jiang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-11</date><risdate>2018</risdate><volume>14</volume><issue>45</issue><spage>e1801857</spage><epage>n/a</epage><pages>e1801857-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6
3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications.
High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30307709</pmid><doi>10.1002/smll.201801857</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-11, Vol.14 (45), p.e1801857-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2118314591 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aqueous solutions Capacitance Capacitors Chemical vapor deposition Electrical resistivity Electrode materials Electrodes energy density Energy storage Graphene high‐performance supercapacitors Microwave plasmas nanolaminate structures Nanotechnology Organic chemistry Silicon carbide Supercapacitors |
title | 3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%203C%E2%80%90SiC/Graphene%20Hybrid%20Nanolaminate%20Films%20for%20High%E2%80%90Performance%20Supercapacitors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Heuser,%20Steffen&rft.date=2018-11&rft.volume=14&rft.issue=45&rft.spage=e1801857&rft.epage=n/a&rft.pages=e1801857-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201801857&rft_dat=%3Cproquest_cross%3E2118314591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2130872009&rft_id=info:pmid/30307709&rfr_iscdi=true |