Loading…

3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors

High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-11, Vol.14 (45), p.e1801857-n/a
Main Authors: Heuser, Steffen, Yang, Nianjun, Hof, Felix, Schulte, Anna, Schönherr, Holger, Jiang, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23
cites cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23
container_end_page n/a
container_issue 45
container_start_page e1801857
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Heuser, Steffen
Yang, Nianjun
Hof, Felix
Schulte, Anna
Schönherr, Holger
Jiang, Xin
description High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6 3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications. High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.
doi_str_mv 10.1002/smll.201801857
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118314591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118314591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMo1q-rR1nw4mXbmU032Ryl2laoH1A9L9ls1qbsl0kX6c2f4G_0lxipVvAiDMwMPPMyPIScIvQRIBq4qiz7EWDiK-Y75AAZ0pAlkdjdzgg9cujcEoBiNOT7pEeBAucgDsgTvQro6OPtfW5Gg4mV7ULXOpiuM2vy4E7WTSkrU8uVDsamrFxQNDaYmueFv3jQ1m-VrJUO5l2rrZKtVGbVWHdM9gpZOn3y3Y_I0_j6cTQNZ_eTm9HlLFRDjHiIXCQCkkRpECA5kyIrGA5zyngsk0zHLEfGADCWIDCXuS6KgrE8y5SKYxXRI3KxyW1t89Jpt0or45QuS1nrpnNphJhQHMYCPXr-B102na39d56ikPAIQHiqv6GUbZyzukhbaypp1ylC-iU8_RKeboX7g7Pv2C6rdL7Ffwx7QGyAV1Pq9T9x6fx2NvsN_wQiOI1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130872009</pqid></control><display><type>article</type><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</creator><creatorcontrib>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</creatorcontrib><description>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6 3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications. High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201801857</identifier><identifier>PMID: 30307709</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Capacitance ; Capacitors ; Chemical vapor deposition ; Electrical resistivity ; Electrode materials ; Electrodes ; energy density ; Energy storage ; Graphene ; high‐performance supercapacitors ; Microwave plasmas ; nanolaminate structures ; Nanotechnology ; Organic chemistry ; Silicon carbide ; Supercapacitors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-11, Vol.14 (45), p.e1801857-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</citedby><cites>FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</cites><orcidid>0000-0002-5558-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30307709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heuser, Steffen</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Hof, Felix</creatorcontrib><creatorcontrib>Schulte, Anna</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6 3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications. High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</description><subject>Aqueous solutions</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Chemical vapor deposition</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>energy density</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>high‐performance supercapacitors</subject><subject>Microwave plasmas</subject><subject>nanolaminate structures</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Silicon carbide</subject><subject>Supercapacitors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMo1q-rR1nw4mXbmU032Ryl2laoH1A9L9ls1qbsl0kX6c2f4G_0lxipVvAiDMwMPPMyPIScIvQRIBq4qiz7EWDiK-Y75AAZ0pAlkdjdzgg9cujcEoBiNOT7pEeBAucgDsgTvQro6OPtfW5Gg4mV7ULXOpiuM2vy4E7WTSkrU8uVDsamrFxQNDaYmueFv3jQ1m-VrJUO5l2rrZKtVGbVWHdM9gpZOn3y3Y_I0_j6cTQNZ_eTm9HlLFRDjHiIXCQCkkRpECA5kyIrGA5zyngsk0zHLEfGADCWIDCXuS6KgrE8y5SKYxXRI3KxyW1t89Jpt0or45QuS1nrpnNphJhQHMYCPXr-B102na39d56ikPAIQHiqv6GUbZyzukhbaypp1ylC-iU8_RKeboX7g7Pv2C6rdL7Ffwx7QGyAV1Pq9T9x6fx2NvsN_wQiOI1p</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Heuser, Steffen</creator><creator>Yang, Nianjun</creator><creator>Hof, Felix</creator><creator>Schulte, Anna</creator><creator>Schönherr, Holger</creator><creator>Jiang, Xin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></search><sort><creationdate>201811</creationdate><title>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</title><author>Heuser, Steffen ; Yang, Nianjun ; Hof, Felix ; Schulte, Anna ; Schönherr, Holger ; Jiang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aqueous solutions</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Chemical vapor deposition</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>energy density</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>high‐performance supercapacitors</topic><topic>Microwave plasmas</topic><topic>nanolaminate structures</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Silicon carbide</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuser, Steffen</creatorcontrib><creatorcontrib>Yang, Nianjun</creatorcontrib><creatorcontrib>Hof, Felix</creatorcontrib><creatorcontrib>Schulte, Anna</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuser, Steffen</au><au>Yang, Nianjun</au><au>Hof, Felix</au><au>Schulte, Anna</au><au>Schönherr, Holger</au><au>Jiang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-11</date><risdate>2018</risdate><volume>14</volume><issue>45</issue><spage>e1801857</spage><epage>n/a</epage><pages>e1801857-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>High‐performance supercapacitors feature big and stable capacitances and high power and energy densities. To fabricate high‐performance supercapacitors, 3D 3C‐SiC/graphene hybrid nanolaminate films are grown via a microwave plasma‐assisted chemical vapor deposition technique. Such films consist of 3D alternating structures of vertically aligned 3C‐SiC and graphene layers, leading to high surface areas and excellent conductivity. They are further applied as the capacitor electrodes to construct electrical double layer capacitors (EDLCs) and pseudocapacitors (PCs) in both aqueous and organic solutions. The capacitance for an EDLC in aqueous solutions is up to 549.9 µF cm−2, more than 100 times higher than that of an epitaxial 3C‐SiC film. In organic solutions, it is 297.3 µF cm−2. The pseudocapacitance in redox‐active species (0.05 Fe(CN)6 3−/4−) contained aqueous solutions is as high as 62.2 mF cm−2. The capacitance remains at 98% of the initial value after 2500 charging/discharging cycles, indicating excellent cyclic stability. In redox‐active species (0.01 m ferrocene) contained organic solutions, it is 16.6 mF cm−2. Energy and power densities of a PC in aqueous solution are 11.6 W h kg−1 and 5.1 kW kg−1, respectively. These vertically aligned 3C‐SiC/graphene hybrid nanolaminate films are thus promising electrode materials for energy storage applications. High‐performance electrical double layer capacitors and pseudocapacitors are fabricated and compared using vertically aligned 3C‐SiC/graphene nanolaminate films in both aqueous and organic solutions. Their big and stable capacitances and high power and energy densities result from a 3D alternating structure of 3C‐SiC and graphene layers inside these chemical vapor deposited films, their high surface areas, and excellent conductivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30307709</pmid><doi>10.1002/smll.201801857</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5558-2314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-11, Vol.14 (45), p.e1801857-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2118314591
source Wiley-Blackwell Read & Publish Collection
subjects Aqueous solutions
Capacitance
Capacitors
Chemical vapor deposition
Electrical resistivity
Electrode materials
Electrodes
energy density
Energy storage
Graphene
high‐performance supercapacitors
Microwave plasmas
nanolaminate structures
Nanotechnology
Organic chemistry
Silicon carbide
Supercapacitors
title 3D 3C‐SiC/Graphene Hybrid Nanolaminate Films for High‐Performance Supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%203C%E2%80%90SiC/Graphene%20Hybrid%20Nanolaminate%20Films%20for%20High%E2%80%90Performance%20Supercapacitors&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Heuser,%20Steffen&rft.date=2018-11&rft.volume=14&rft.issue=45&rft.spage=e1801857&rft.epage=n/a&rft.pages=e1801857-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201801857&rft_dat=%3Cproquest_cross%3E2118314591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4127-17989088ce090a76a9bf614d3675a8be56d1660015a091dadefff66dbbcc55c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2130872009&rft_id=info:pmid/30307709&rfr_iscdi=true