Loading…

Soil micronutrient availability after compost addition to St. Augustine Grass

Compost application to turf grasses can increase dissolved organic matter and nutrient levels in soil but may also enhance leaching and runoff losses. The objectives of this study were to determine the influence of composts on soil organic matter and accumulation of DTPA-and water-extractable Mn, Fe...

Full description

Saved in:
Bibliographic Details
Published in:Compost science & utilization 2007-03, Vol.15 (2), p.127-134
Main Authors: Wright, A.L, Provin, T.L, Hons, F.M, Zuberer, D.A, White, R.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compost application to turf grasses can increase dissolved organic matter and nutrient levels in soil but may also enhance leaching and runoff losses. The objectives of this study were to determine the influence of composts on soil organic matter and accumulation of DTPA-and water-extractable Mn, Fe, Cu, and Zn in St. Augustine Grass [Stenotaphrum secundatum (Walt.) Kuntze] turf. Composts increased soil organic C (SOC) soon after application, but no further increases occurred beyond 11 months. In contrast, dissolved organic C (DOC) increased from 3 to 29 months after application, indicating contributions from decomposition of composts and St. Augustine Grass residues. Dissolved organic C was 75, 78, and 101% greater 29 months after application of 0, 80, and 160 Mg ha −1 of compost, respectively, than before application. While DTPA-extractable Mn and Cu increased from 0 to 29 months, Fe and Zn decreased and were often below background levels. By 29 months, DTPA-extractable Mn and Cu for soil receiving 160 Mg ha −1 increased 291 and 3972%, while Fe and Zn decreased 8 and 13%, respectively. Furthermore, water-extractable Mn, Fe, Cu, and Zn decreased 67, 78, 75, and 22%, respectively, by 29 months for soils receiving 160 Mg ha −1 of compost. Thus, only DTPA-extractable Mn and Cu accumulated in surface soils receiving composts. Soil pH had more influence on water-extractable than DTPA-extractable micronutrients, as water-extractable micronutrient concentrations decreased while soil pH increased after compost application. Soil organic C, DOC, and DTPA-extractable micronutrients exhibited considerable seasonal variation. Decreases in SOC, DOC, and DTPA-extractable Mn and Cu occurred during winter dormancy after high levels of precipitation. The formation of DOC-micronutrient complexes and leaching following precipitation events likely explain seasonal fluctuations in micronutrient concentrations. Similar trends in micronutrient concentrations were observed for both compost-amended and unamended soils, indicating that seasonal variation was more directly related to growth stages of St. Augustine Grass, precipitation, and subsequent effects on DOC, than compost application. In fact, composts only influenced the magnitude of micronutrient response to application.
ISSN:1065-657X
2326-2397
DOI:10.1080/1065657X.2007.10702322