Loading…

Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers

[Display omitted] •Interfacial and colloidal properties underlying synthesis of NPs by W/O/W technique.•Surfactant (F68) added from water improves colloidal and biological NP properties.•An in vitro model to mimic the first step of the W/O/W NP synthesis is developed•F68 added from water displaces m...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2019-01, Vol.173, p.295-302
Main Authors: del Castillo-Santaella, Teresa, Peula-García, José Manuel, Maldonado-Valderrama, Julia, Jódar-Reyes, Ana Belén
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3
cites cdi_FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3
container_end_page 302
container_issue
container_start_page 295
container_title Colloids and surfaces, B, Biointerfaces
container_volume 173
creator del Castillo-Santaella, Teresa
Peula-García, José Manuel
Maldonado-Valderrama, Julia
Jódar-Reyes, Ana Belén
description [Display omitted] •Interfacial and colloidal properties underlying synthesis of NPs by W/O/W technique.•Surfactant (F68) added from water improves colloidal and biological NP properties.•An in vitro model to mimic the first step of the W/O/W NP synthesis is developed•F68 added from water displaces more protein from interface protecting its structure. The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.
doi_str_mv 10.1016/j.colsurfb.2018.09.072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2119926318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776518306830</els_id><sourcerecordid>2119926318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3</originalsourceid><addsrcrecordid>eNqFUclOHDEQtVAimBB-AfmYSzdeuu3uWyIUEiQkLolytLyUiUc99sT2ROIX-Oq4GciVk1Wut1TVQ-iSkp4SKq62vU1LOWRvekbo1JO5J5KdoA2dJO8GLuQ7tCEzk52UYjxDH0rZEkLYQOUpOuOEk2kYhw16uo0VsrY1pIiTx6tkq3SsWEeH9zlVCBHriutvwPdXv3BYCQ0Dz4BQCwbvwVbcBNpMSwpOL889E9KSHoJtZdPZQ64BymqyT8vjDnKwOOqYrM45QC4f0XuvlwIXL-85-nnz9cf19-7u_tvt9Ze7zg5krB2nljojnBi05GKe_GicZ5MHL8wsLTPMeDMJ6ai33LVPMw8wTrMXwls7AD9Hn466bag_ByhV7UKxsCw6QjoUxSidZyY4nRpUHKE2p1IyeLXPYafzo6JErTmorXrNQa05KDKrlkMjXr54HMwO3H_a6-Eb4PMRAG3Tv219VWyAaMGF3I6pXApvefwDRn-hLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119926318</pqid></control><display><type>article</type><title>Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers</title><source>ScienceDirect Freedom Collection</source><creator>del Castillo-Santaella, Teresa ; Peula-García, José Manuel ; Maldonado-Valderrama, Julia ; Jódar-Reyes, Ana Belén</creator><creatorcontrib>del Castillo-Santaella, Teresa ; Peula-García, José Manuel ; Maldonado-Valderrama, Julia ; Jódar-Reyes, Ana Belén</creatorcontrib><description>[Display omitted] •Interfacial and colloidal properties underlying synthesis of NPs by W/O/W technique.•Surfactant (F68) added from water improves colloidal and biological NP properties.•An in vitro model to mimic the first step of the W/O/W NP synthesis is developed•F68 added from water displaces more protein from interface protecting its structure. The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2018.09.072</identifier><identifier>PMID: 30308454</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Biomolecule loaded nanoparticles ; Chickens ; Chloroform - chemistry ; Colloidal stability ; Dilatational rheology ; Double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique ; Drug Carriers - chemistry ; Egg White - chemistry ; Emulsions ; Lysozyme ; Muramidase - chemistry ; Nanoparticles - chemistry ; Oil/water interface ; Particle Size ; Pluronic F68 ; Poloxamer - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polymeric nanoparticles ; Surface Properties ; Surface Tension ; Surfactant-protein interaction ; Water - chemistry</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.295-302</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3</citedby><cites>FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30308454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>del Castillo-Santaella, Teresa</creatorcontrib><creatorcontrib>Peula-García, José Manuel</creatorcontrib><creatorcontrib>Maldonado-Valderrama, Julia</creatorcontrib><creatorcontrib>Jódar-Reyes, Ana Belén</creatorcontrib><title>Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] •Interfacial and colloidal properties underlying synthesis of NPs by W/O/W technique.•Surfactant (F68) added from water improves colloidal and biological NP properties.•An in vitro model to mimic the first step of the W/O/W NP synthesis is developed•F68 added from water displaces more protein from interface protecting its structure. The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.</description><subject>Animals</subject><subject>Biomolecule loaded nanoparticles</subject><subject>Chickens</subject><subject>Chloroform - chemistry</subject><subject>Colloidal stability</subject><subject>Dilatational rheology</subject><subject>Double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique</subject><subject>Drug Carriers - chemistry</subject><subject>Egg White - chemistry</subject><subject>Emulsions</subject><subject>Lysozyme</subject><subject>Muramidase - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Oil/water interface</subject><subject>Particle Size</subject><subject>Pluronic F68</subject><subject>Poloxamer - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polymeric nanoparticles</subject><subject>Surface Properties</subject><subject>Surface Tension</subject><subject>Surfactant-protein interaction</subject><subject>Water - chemistry</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUclOHDEQtVAimBB-AfmYSzdeuu3uWyIUEiQkLolytLyUiUc99sT2ROIX-Oq4GciVk1Wut1TVQ-iSkp4SKq62vU1LOWRvekbo1JO5J5KdoA2dJO8GLuQ7tCEzk52UYjxDH0rZEkLYQOUpOuOEk2kYhw16uo0VsrY1pIiTx6tkq3SsWEeH9zlVCBHriutvwPdXv3BYCQ0Dz4BQCwbvwVbcBNpMSwpOL889E9KSHoJtZdPZQ64BymqyT8vjDnKwOOqYrM45QC4f0XuvlwIXL-85-nnz9cf19-7u_tvt9Ze7zg5krB2nljojnBi05GKe_GicZ5MHL8wsLTPMeDMJ6ai33LVPMw8wTrMXwls7AD9Hn466bag_ByhV7UKxsCw6QjoUxSidZyY4nRpUHKE2p1IyeLXPYafzo6JErTmorXrNQa05KDKrlkMjXr54HMwO3H_a6-Eb4PMRAG3Tv219VWyAaMGF3I6pXApvefwDRn-hLw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>del Castillo-Santaella, Teresa</creator><creator>Peula-García, José Manuel</creator><creator>Maldonado-Valderrama, Julia</creator><creator>Jódar-Reyes, Ana Belén</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190101</creationdate><title>Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers</title><author>del Castillo-Santaella, Teresa ; Peula-García, José Manuel ; Maldonado-Valderrama, Julia ; Jódar-Reyes, Ana Belén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomolecule loaded nanoparticles</topic><topic>Chickens</topic><topic>Chloroform - chemistry</topic><topic>Colloidal stability</topic><topic>Dilatational rheology</topic><topic>Double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique</topic><topic>Drug Carriers - chemistry</topic><topic>Egg White - chemistry</topic><topic>Emulsions</topic><topic>Lysozyme</topic><topic>Muramidase - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Oil/water interface</topic><topic>Particle Size</topic><topic>Pluronic F68</topic><topic>Poloxamer - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polymeric nanoparticles</topic><topic>Surface Properties</topic><topic>Surface Tension</topic><topic>Surfactant-protein interaction</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del Castillo-Santaella, Teresa</creatorcontrib><creatorcontrib>Peula-García, José Manuel</creatorcontrib><creatorcontrib>Maldonado-Valderrama, Julia</creatorcontrib><creatorcontrib>Jódar-Reyes, Ana Belén</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Castillo-Santaella, Teresa</au><au>Peula-García, José Manuel</au><au>Maldonado-Valderrama, Julia</au><au>Jódar-Reyes, Ana Belén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>173</volume><spage>295</spage><epage>302</epage><pages>295-302</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] •Interfacial and colloidal properties underlying synthesis of NPs by W/O/W technique.•Surfactant (F68) added from water improves colloidal and biological NP properties.•An in vitro model to mimic the first step of the W/O/W NP synthesis is developed•F68 added from water displaces more protein from interface protecting its structure. The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30308454</pmid><doi>10.1016/j.colsurfb.2018.09.072</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2019-01, Vol.173, p.295-302
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_2119926318
source ScienceDirect Freedom Collection
subjects Animals
Biomolecule loaded nanoparticles
Chickens
Chloroform - chemistry
Colloidal stability
Dilatational rheology
Double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique
Drug Carriers - chemistry
Egg White - chemistry
Emulsions
Lysozyme
Muramidase - chemistry
Nanoparticles - chemistry
Oil/water interface
Particle Size
Pluronic F68
Poloxamer - chemistry
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Polymeric nanoparticles
Surface Properties
Surface Tension
Surfactant-protein interaction
Water - chemistry
title Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20surfactant%20and%20protein%20at%20the%20O/W%20interface%20and%20its%20effect%20on%20colloidal%20and%20biological%20properties%20of%20polymeric%20nanocarriers&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=del%20Castillo-Santaella,%20Teresa&rft.date=2019-01-01&rft.volume=173&rft.spage=295&rft.epage=302&rft.pages=295-302&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2018.09.072&rft_dat=%3Cproquest_cross%3E2119926318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-31c1db6d64a73698f5bdf28fef6b97c2b2bfb867d1fc3df6bb94e589f66fcc4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2119926318&rft_id=info:pmid/30308454&rfr_iscdi=true