Loading…

Fluorescence intensity modulation of CdSe/ZnS quantum dots assesses reactive oxygen species during chemotherapy and radiotherapy for cancer cells

Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological syste...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biophotonics 2019-02, Vol.12 (2), p.e201800172-n/a
Main Authors: Lee, Bong H., Suresh, Sindhuja, Ekpenyong, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core‐shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P 
ISSN:1864-063X
1864-0648
DOI:10.1002/jbio.201800172