Loading…
High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary and demographic implications
Hormogastridae earthworms are highly important for the functioning of the Mediterranean soil system. However, little is known about the species distribution and genetic diversity of these soil invertebrates. In the present study, the genetic differentiation and gene flow were studied among populatio...
Saved in:
Published in: | Zoologica scripta 2009-09, Vol.38 (5), p.537-552 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hormogastridae earthworms are highly important for the functioning of the Mediterranean soil system. However, little is known about the species distribution and genetic diversity of these soil invertebrates. In the present study, the genetic differentiation and gene flow were studied among populations of hormogastrids from the central Iberian Peninsula. A 648‐bp portion of the mitochondrial cytochrome c oxidase I gene was sequenced for 82 individuals from 7 localities, resulting in the identification of 38 haplotypes exclusive to localities. All of the individuals were morphologically identified as Hormogaster elisae, but the high genetic divergence found among populations (up to 20.20%) suggests the occurrence of more than one cryptic species within this region. Further analysis of the phylogenetic relationships revealed six different evolutionary lineages coincident with geographical location, including the two nearest populations Molar and Redueña as one evolutionary unit. From these results, at least three new species could be inferred, in addition to the morphospecies H. elisae s.s. Partitioning of genetic variance among populations indicated that isolation by distance was the primary agent for differentiation of the investigated hormogastrid populations. Our data suggest that the evolutionary lineages for H. elisae s.l. originated between the late Miocene and the early Pleistocene, but that mtDNA genealogies coalesce on a more recent scale of a few thousand years. |
---|---|
ISSN: | 0300-3256 1463-6409 |
DOI: | 10.1111/j.1463-6409.2009.00389.x |