Loading…
Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands
The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This paper presents a characterisation of ILs on the islands of La Palma (LP) and Gran Canaria (GC) based on multivariable st...
Saved in:
Published in: | Waste management & research 2018-11, Vol.36 (11), p.1049-1060 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3 |
container_end_page | 1060 |
container_issue | 11 |
container_start_page | 1049 |
container_title | Waste management & research |
container_volume | 36 |
creator | Quesada-Ruiz, L Rodriguez-Galiano, V Jordá-Borrell, R |
description | The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This paper presents a characterisation of ILs on the islands of La Palma (LP) and Gran Canaria (GC) based on multivariable statistical analysis. Inspection of numerous sites on both islands revealed a total of 153 and 286 ILs on LP and GC, respectively. A geospatial database was created composed of different potentially explanatory features of different typology (177): waste type, control and vigilance, socioeconomic, accessibility, distance to elements of interest, visibility and physical. The degree of association between the explanatory features and the occurrence of ILs was analysed with the support of exploratory statistics and the multivariable analysis techniques of principal component analysis (PCA) and binary logistic regression (LR). PCA explained 82.34% and 81.83% of total data variance in LP and GC, respectively, considering 7 and 6 components (Kaiser–Mayer–Olkin; LP: 0.715; GC: 0.711). The LR models for LP and GC had an overall accuracy of 93.5% and 92.5%. In LP and GC, 6 of 23 features and 9 of 21 features were, respectively, selected. The features most associated with the occurrence of ILs were: in LP, building density, distance to agricultural spaces and distance to green zones; in GC, the industrial activity indicator, density of ground use transition to artificial covers, density of greenhouses and distance to communication routes. |
doi_str_mv | 10.1177/0734242X18804031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123709227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0734242X18804031</sage_id><sourcerecordid>2123709227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbK3ePcmCFy_R2Y_sJkcpfhQKXhS8hWQzabck2ZpNhP73bmhVEDwNy_u9N7OPkEsGt4xpfQdaSC75O0sSkCDYEZkySFUklEqPyXSUo1GfkDPvNwAgEwmnZCJACKVjNiXFosS2t9XOtivar5E2uW3pdr3z1uQ1zduSemesQ-Na11hDy85-Yuepq6ita1wFqA5UFR6eBuuYMc_bvNvRhR8Vf05Oqrz2eHGYM_L2-PA6f46WL0-L-f0yMpKLPoqNYCkDlTJWpFpzDkamJkGjTJXzKi1YgolSkoNUiYoRRcFVgaCT4IlVIWbkZp-77dzHgL7PGusN1uEIdIPPOONCQ8q5Duj1H3Tjhq4N142UjgUPZQYK9pTpnPcdVtm2s034WcYgG_vP_vYfLFeH4KFosPwxfBcegGgP-HyFv1v_DfwCgLCLnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127532031</pqid></control><display><type>article</type><title>Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands</title><source>SAGE</source><creator>Quesada-Ruiz, L ; Rodriguez-Galiano, V ; Jordá-Borrell, R</creator><creatorcontrib>Quesada-Ruiz, L ; Rodriguez-Galiano, V ; Jordá-Borrell, R</creatorcontrib><description>The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This paper presents a characterisation of ILs on the islands of La Palma (LP) and Gran Canaria (GC) based on multivariable statistical analysis. Inspection of numerous sites on both islands revealed a total of 153 and 286 ILs on LP and GC, respectively. A geospatial database was created composed of different potentially explanatory features of different typology (177): waste type, control and vigilance, socioeconomic, accessibility, distance to elements of interest, visibility and physical. The degree of association between the explanatory features and the occurrence of ILs was analysed with the support of exploratory statistics and the multivariable analysis techniques of principal component analysis (PCA) and binary logistic regression (LR). PCA explained 82.34% and 81.83% of total data variance in LP and GC, respectively, considering 7 and 6 components (Kaiser–Mayer–Olkin; LP: 0.715; GC: 0.711). The LR models for LP and GC had an overall accuracy of 93.5% and 92.5%. In LP and GC, 6 of 23 features and 9 of 21 features were, respectively, selected. The features most associated with the occurrence of ILs were: in LP, building density, distance to agricultural spaces and distance to green zones; in GC, the industrial activity indicator, density of ground use transition to artificial covers, density of greenhouses and distance to communication routes.</description><identifier>ISSN: 0734-242X</identifier><identifier>EISSN: 1096-3669</identifier><identifier>DOI: 10.1177/0734242X18804031</identifier><identifier>PMID: 30336751</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Agricultural management ; Atlantic Islands ; Density ; Farm buildings ; Greenhouses ; Hazards ; Humans ; Inspection ; Islands ; Landfill ; Landfills ; Principal components analysis ; Regression analysis ; Socioeconomic Factors ; Socioeconomics ; Spain ; Statistical analysis ; Typology ; Vigilance ; Visibility ; Waste disposal ; Waste Disposal Facilities ; Waste disposal sites</subject><ispartof>Waste management & research, 2018-11, Vol.36 (11), p.1049-1060</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3</citedby><cites>FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3</cites><orcidid>0000-0001-7886-5678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30336751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quesada-Ruiz, L</creatorcontrib><creatorcontrib>Rodriguez-Galiano, V</creatorcontrib><creatorcontrib>Jordá-Borrell, R</creatorcontrib><title>Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands</title><title>Waste management & research</title><addtitle>Waste Manag Res</addtitle><description>The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This paper presents a characterisation of ILs on the islands of La Palma (LP) and Gran Canaria (GC) based on multivariable statistical analysis. Inspection of numerous sites on both islands revealed a total of 153 and 286 ILs on LP and GC, respectively. A geospatial database was created composed of different potentially explanatory features of different typology (177): waste type, control and vigilance, socioeconomic, accessibility, distance to elements of interest, visibility and physical. The degree of association between the explanatory features and the occurrence of ILs was analysed with the support of exploratory statistics and the multivariable analysis techniques of principal component analysis (PCA) and binary logistic regression (LR). PCA explained 82.34% and 81.83% of total data variance in LP and GC, respectively, considering 7 and 6 components (Kaiser–Mayer–Olkin; LP: 0.715; GC: 0.711). The LR models for LP and GC had an overall accuracy of 93.5% and 92.5%. In LP and GC, 6 of 23 features and 9 of 21 features were, respectively, selected. The features most associated with the occurrence of ILs were: in LP, building density, distance to agricultural spaces and distance to green zones; in GC, the industrial activity indicator, density of ground use transition to artificial covers, density of greenhouses and distance to communication routes.</description><subject>Agricultural management</subject><subject>Atlantic Islands</subject><subject>Density</subject><subject>Farm buildings</subject><subject>Greenhouses</subject><subject>Hazards</subject><subject>Humans</subject><subject>Inspection</subject><subject>Islands</subject><subject>Landfill</subject><subject>Landfills</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Socioeconomic Factors</subject><subject>Socioeconomics</subject><subject>Spain</subject><subject>Statistical analysis</subject><subject>Typology</subject><subject>Vigilance</subject><subject>Visibility</subject><subject>Waste disposal</subject><subject>Waste Disposal Facilities</subject><subject>Waste disposal sites</subject><issn>0734-242X</issn><issn>1096-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRbK3ePcmCFy_R2Y_sJkcpfhQKXhS8hWQzabck2ZpNhP73bmhVEDwNy_u9N7OPkEsGt4xpfQdaSC75O0sSkCDYEZkySFUklEqPyXSUo1GfkDPvNwAgEwmnZCJACKVjNiXFosS2t9XOtivar5E2uW3pdr3z1uQ1zduSemesQ-Na11hDy85-Yuepq6ita1wFqA5UFR6eBuuYMc_bvNvRhR8Vf05Oqrz2eHGYM_L2-PA6f46WL0-L-f0yMpKLPoqNYCkDlTJWpFpzDkamJkGjTJXzKi1YgolSkoNUiYoRRcFVgaCT4IlVIWbkZp-77dzHgL7PGusN1uEIdIPPOONCQ8q5Duj1H3Tjhq4N142UjgUPZQYK9pTpnPcdVtm2s034WcYgG_vP_vYfLFeH4KFosPwxfBcegGgP-HyFv1v_DfwCgLCLnw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Quesada-Ruiz, L</creator><creator>Rodriguez-Galiano, V</creator><creator>Jordá-Borrell, R</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7886-5678</orcidid></search><sort><creationdate>20181101</creationdate><title>Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands</title><author>Quesada-Ruiz, L ; Rodriguez-Galiano, V ; Jordá-Borrell, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural management</topic><topic>Atlantic Islands</topic><topic>Density</topic><topic>Farm buildings</topic><topic>Greenhouses</topic><topic>Hazards</topic><topic>Humans</topic><topic>Inspection</topic><topic>Islands</topic><topic>Landfill</topic><topic>Landfills</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Socioeconomic Factors</topic><topic>Socioeconomics</topic><topic>Spain</topic><topic>Statistical analysis</topic><topic>Typology</topic><topic>Vigilance</topic><topic>Visibility</topic><topic>Waste disposal</topic><topic>Waste Disposal Facilities</topic><topic>Waste disposal sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quesada-Ruiz, L</creatorcontrib><creatorcontrib>Rodriguez-Galiano, V</creatorcontrib><creatorcontrib>Jordá-Borrell, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Waste management & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quesada-Ruiz, L</au><au>Rodriguez-Galiano, V</au><au>Jordá-Borrell, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands</atitle><jtitle>Waste management & research</jtitle><addtitle>Waste Manag Res</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>36</volume><issue>11</issue><spage>1049</spage><epage>1060</epage><pages>1049-1060</pages><issn>0734-242X</issn><eissn>1096-3669</eissn><abstract>The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This paper presents a characterisation of ILs on the islands of La Palma (LP) and Gran Canaria (GC) based on multivariable statistical analysis. Inspection of numerous sites on both islands revealed a total of 153 and 286 ILs on LP and GC, respectively. A geospatial database was created composed of different potentially explanatory features of different typology (177): waste type, control and vigilance, socioeconomic, accessibility, distance to elements of interest, visibility and physical. The degree of association between the explanatory features and the occurrence of ILs was analysed with the support of exploratory statistics and the multivariable analysis techniques of principal component analysis (PCA) and binary logistic regression (LR). PCA explained 82.34% and 81.83% of total data variance in LP and GC, respectively, considering 7 and 6 components (Kaiser–Mayer–Olkin; LP: 0.715; GC: 0.711). The LR models for LP and GC had an overall accuracy of 93.5% and 92.5%. In LP and GC, 6 of 23 features and 9 of 21 features were, respectively, selected. The features most associated with the occurrence of ILs were: in LP, building density, distance to agricultural spaces and distance to green zones; in GC, the industrial activity indicator, density of ground use transition to artificial covers, density of greenhouses and distance to communication routes.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30336751</pmid><doi>10.1177/0734242X18804031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7886-5678</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-242X |
ispartof | Waste management & research, 2018-11, Vol.36 (11), p.1049-1060 |
issn | 0734-242X 1096-3669 |
language | eng |
recordid | cdi_proquest_miscellaneous_2123709227 |
source | SAGE |
subjects | Agricultural management Atlantic Islands Density Farm buildings Greenhouses Hazards Humans Inspection Islands Landfill Landfills Principal components analysis Regression analysis Socioeconomic Factors Socioeconomics Spain Statistical analysis Typology Vigilance Visibility Waste disposal Waste Disposal Facilities Waste disposal sites |
title | Identifying the main physical and socioeconomic drivers of illegal landfills in the Canary Islands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20main%20physical%20and%20socioeconomic%20drivers%20of%20illegal%20landfills%20in%20the%20Canary%20Islands&rft.jtitle=Waste%20management%20&%20research&rft.au=Quesada-Ruiz,%20L&rft.date=2018-11-01&rft.volume=36&rft.issue=11&rft.spage=1049&rft.epage=1060&rft.pages=1049-1060&rft.issn=0734-242X&rft.eissn=1096-3669&rft_id=info:doi/10.1177/0734242X18804031&rft_dat=%3Cproquest_cross%3E2123709227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-5c319106911b977220c49c8ec6cfa2f9b18e86642046865ee3b26be07806956b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127532031&rft_id=info:pmid/30336751&rft_sage_id=10.1177_0734242X18804031&rfr_iscdi=true |