Loading…

Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate

Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e....

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2018-11, Vol.52 (21), p.12198-12207
Main Authors: Yuan, Hai-Yan, Ding, Long-Jun, Zama, Eric Fru, Liu, Pan-Pan, Hozzein, Wael N, Zhu, Yong-Guan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3
cites cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3
container_end_page 12207
container_issue 21
container_start_page 12198
container_title Environmental science & technology
container_volume 52
creator Yuan, Hai-Yan
Ding, Long-Jun
Zama, Eric Fru
Liu, Pan-Pan
Hozzein, Wael N
Zhu, Yong-Guan
description Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.
doi_str_mv 10.1021/acs.est.8b04121
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123714142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123714142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMobk7P3iTgRZBueZOmS4865gdseJiCt5K2ydrRNTNJkf33Zm56ELzkJfB7nvfjQegSyBAIhZEs3FA5PxQ5iYHCEeoDpyTigsMx6hMCLEpZ8t5DZ86tCCGUEXGKeowwJlIx7qP6vjZFJS2em7JrpFcOz5WvZGuWqlWudthX1nTLCk8bVXhrWrzYtqFuqi02Gs_rwhpjl7Kt3drhz9oH8lvfYOmwxIsud94G43N0omXj1MWhDtDbw_R18hTNXh6fJ3ezSLJU-PAqkCClKLkuuShSoWmaMJpDybgUKeVxLrSkMYsTlgAtw0eBBk0Lrmmi2QDd7H031nx04TjZunaFahrZKtO5jAJlY4ghpgG9_oOuTGfbMF2gGE1EmsYQqNGeCps6Z5XONrZeS7vNgGS7FLKQQrZTH1IIiquDb5evVfnL_5w9ALd7YKf87fmf3Rc9lJO2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132689941</pqid></control><display><type>article</type><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</creator><creatorcontrib>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</creatorcontrib><description>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b04121</identifier><identifier>PMID: 30338987</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anaerobic bacteria ; Animal wastes ; Bacteria ; Carbon cycle ; Charcoal ; Electrochemistry ; Electron transfer ; Ethanol ; Fourier transforms ; Functional groups ; Infrared spectroscopy ; Methanogenesis ; Methanogenic bacteria ; Microorganisms ; Photoelectron spectroscopy ; Photoelectrons ; Polymerase chain reaction ; Quinones ; Raw materials ; Rice fields ; Spectroscopy ; Spectrum analysis ; Straw ; Substrates ; Wood ; Wood chips ; X ray spectra</subject><ispartof>Environmental science &amp; technology, 2018-11, Vol.52 (21), p.12198-12207</ispartof><rights>Copyright American Chemical Society Nov 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</citedby><cites>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</cites><orcidid>0000-0003-3861-8482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30338987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Hai-Yan</creatorcontrib><creatorcontrib>Ding, Long-Jun</creatorcontrib><creatorcontrib>Zama, Eric Fru</creatorcontrib><creatorcontrib>Liu, Pan-Pan</creatorcontrib><creatorcontrib>Hozzein, Wael N</creatorcontrib><creatorcontrib>Zhu, Yong-Guan</creatorcontrib><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</description><subject>Anaerobic bacteria</subject><subject>Animal wastes</subject><subject>Bacteria</subject><subject>Carbon cycle</subject><subject>Charcoal</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Infrared spectroscopy</subject><subject>Methanogenesis</subject><subject>Methanogenic bacteria</subject><subject>Microorganisms</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polymerase chain reaction</subject><subject>Quinones</subject><subject>Raw materials</subject><subject>Rice fields</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Straw</subject><subject>Substrates</subject><subject>Wood</subject><subject>Wood chips</subject><subject>X ray spectra</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LwzAYxoMobk7P3iTgRZBueZOmS4865gdseJiCt5K2ydrRNTNJkf33Zm56ELzkJfB7nvfjQegSyBAIhZEs3FA5PxQ5iYHCEeoDpyTigsMx6hMCLEpZ8t5DZ86tCCGUEXGKeowwJlIx7qP6vjZFJS2em7JrpFcOz5WvZGuWqlWudthX1nTLCk8bVXhrWrzYtqFuqi02Gs_rwhpjl7Kt3drhz9oH8lvfYOmwxIsud94G43N0omXj1MWhDtDbw_R18hTNXh6fJ3ezSLJU-PAqkCClKLkuuShSoWmaMJpDybgUKeVxLrSkMYsTlgAtw0eBBk0Lrmmi2QDd7H031nx04TjZunaFahrZKtO5jAJlY4ghpgG9_oOuTGfbMF2gGE1EmsYQqNGeCps6Z5XONrZeS7vNgGS7FLKQQrZTH1IIiquDb5evVfnL_5w9ALd7YKf87fmf3Rc9lJO2</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Yuan, Hai-Yan</creator><creator>Ding, Long-Jun</creator><creator>Zama, Eric Fru</creator><creator>Liu, Pan-Pan</creator><creator>Hozzein, Wael N</creator><creator>Zhu, Yong-Guan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3861-8482</orcidid></search><sort><creationdate>20181106</creationdate><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><author>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anaerobic bacteria</topic><topic>Animal wastes</topic><topic>Bacteria</topic><topic>Carbon cycle</topic><topic>Charcoal</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Infrared spectroscopy</topic><topic>Methanogenesis</topic><topic>Methanogenic bacteria</topic><topic>Microorganisms</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polymerase chain reaction</topic><topic>Quinones</topic><topic>Raw materials</topic><topic>Rice fields</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Straw</topic><topic>Substrates</topic><topic>Wood</topic><topic>Wood chips</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Hai-Yan</creatorcontrib><creatorcontrib>Ding, Long-Jun</creatorcontrib><creatorcontrib>Zama, Eric Fru</creatorcontrib><creatorcontrib>Liu, Pan-Pan</creatorcontrib><creatorcontrib>Hozzein, Wael N</creatorcontrib><creatorcontrib>Zhu, Yong-Guan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Hai-Yan</au><au>Ding, Long-Jun</au><au>Zama, Eric Fru</au><au>Liu, Pan-Pan</au><au>Hozzein, Wael N</au><au>Zhu, Yong-Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>52</volume><issue>21</issue><spage>12198</spage><epage>12207</epage><pages>12198-12207</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30338987</pmid><doi>10.1021/acs.est.8b04121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3861-8482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2018-11, Vol.52 (21), p.12198-12207
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2123714142
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anaerobic bacteria
Animal wastes
Bacteria
Carbon cycle
Charcoal
Electrochemistry
Electron transfer
Ethanol
Fourier transforms
Functional groups
Infrared spectroscopy
Methanogenesis
Methanogenic bacteria
Microorganisms
Photoelectron spectroscopy
Photoelectrons
Polymerase chain reaction
Quinones
Raw materials
Rice fields
Spectroscopy
Spectrum analysis
Straw
Substrates
Wood
Wood chips
X ray spectra
title Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar%20Modulates%20Methanogenesis%20through%20Electron%20Syntrophy%20of%20Microorganisms%20with%20Ethanol%20as%20a%20Substrate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yuan,%20Hai-Yan&rft.date=2018-11-06&rft.volume=52&rft.issue=21&rft.spage=12198&rft.epage=12207&rft.pages=12198-12207&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b04121&rft_dat=%3Cproquest_cross%3E2123714142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132689941&rft_id=info:pmid/30338987&rfr_iscdi=true