Loading…
Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate
Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e....
Saved in:
Published in: | Environmental science & technology 2018-11, Vol.52 (21), p.12198-12207 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3 |
container_end_page | 12207 |
container_issue | 21 |
container_start_page | 12198 |
container_title | Environmental science & technology |
container_volume | 52 |
creator | Yuan, Hai-Yan Ding, Long-Jun Zama, Eric Fru Liu, Pan-Pan Hozzein, Wael N Zhu, Yong-Guan |
description | Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar. |
doi_str_mv | 10.1021/acs.est.8b04121 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123714142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123714142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMobk7P3iTgRZBueZOmS4865gdseJiCt5K2ydrRNTNJkf33Zm56ELzkJfB7nvfjQegSyBAIhZEs3FA5PxQ5iYHCEeoDpyTigsMx6hMCLEpZ8t5DZ86tCCGUEXGKeowwJlIx7qP6vjZFJS2em7JrpFcOz5WvZGuWqlWudthX1nTLCk8bVXhrWrzYtqFuqi02Gs_rwhpjl7Kt3drhz9oH8lvfYOmwxIsud94G43N0omXj1MWhDtDbw_R18hTNXh6fJ3ezSLJU-PAqkCClKLkuuShSoWmaMJpDybgUKeVxLrSkMYsTlgAtw0eBBk0Lrmmi2QDd7H031nx04TjZunaFahrZKtO5jAJlY4ghpgG9_oOuTGfbMF2gGE1EmsYQqNGeCps6Z5XONrZeS7vNgGS7FLKQQrZTH1IIiquDb5evVfnL_5w9ALd7YKf87fmf3Rc9lJO2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132689941</pqid></control><display><type>article</type><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</creator><creatorcontrib>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</creatorcontrib><description>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b04121</identifier><identifier>PMID: 30338987</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anaerobic bacteria ; Animal wastes ; Bacteria ; Carbon cycle ; Charcoal ; Electrochemistry ; Electron transfer ; Ethanol ; Fourier transforms ; Functional groups ; Infrared spectroscopy ; Methanogenesis ; Methanogenic bacteria ; Microorganisms ; Photoelectron spectroscopy ; Photoelectrons ; Polymerase chain reaction ; Quinones ; Raw materials ; Rice fields ; Spectroscopy ; Spectrum analysis ; Straw ; Substrates ; Wood ; Wood chips ; X ray spectra</subject><ispartof>Environmental science & technology, 2018-11, Vol.52 (21), p.12198-12207</ispartof><rights>Copyright American Chemical Society Nov 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</citedby><cites>FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</cites><orcidid>0000-0003-3861-8482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30338987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Hai-Yan</creatorcontrib><creatorcontrib>Ding, Long-Jun</creatorcontrib><creatorcontrib>Zama, Eric Fru</creatorcontrib><creatorcontrib>Liu, Pan-Pan</creatorcontrib><creatorcontrib>Hozzein, Wael N</creatorcontrib><creatorcontrib>Zhu, Yong-Guan</creatorcontrib><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</description><subject>Anaerobic bacteria</subject><subject>Animal wastes</subject><subject>Bacteria</subject><subject>Carbon cycle</subject><subject>Charcoal</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Infrared spectroscopy</subject><subject>Methanogenesis</subject><subject>Methanogenic bacteria</subject><subject>Microorganisms</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polymerase chain reaction</subject><subject>Quinones</subject><subject>Raw materials</subject><subject>Rice fields</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Straw</subject><subject>Substrates</subject><subject>Wood</subject><subject>Wood chips</subject><subject>X ray spectra</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LwzAYxoMobk7P3iTgRZBueZOmS4865gdseJiCt5K2ydrRNTNJkf33Zm56ELzkJfB7nvfjQegSyBAIhZEs3FA5PxQ5iYHCEeoDpyTigsMx6hMCLEpZ8t5DZ86tCCGUEXGKeowwJlIx7qP6vjZFJS2em7JrpFcOz5WvZGuWqlWudthX1nTLCk8bVXhrWrzYtqFuqi02Gs_rwhpjl7Kt3drhz9oH8lvfYOmwxIsud94G43N0omXj1MWhDtDbw_R18hTNXh6fJ3ezSLJU-PAqkCClKLkuuShSoWmaMJpDybgUKeVxLrSkMYsTlgAtw0eBBk0Lrmmi2QDd7H031nx04TjZunaFahrZKtO5jAJlY4ghpgG9_oOuTGfbMF2gGE1EmsYQqNGeCps6Z5XONrZeS7vNgGS7FLKQQrZTH1IIiquDb5evVfnL_5w9ALd7YKf87fmf3Rc9lJO2</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Yuan, Hai-Yan</creator><creator>Ding, Long-Jun</creator><creator>Zama, Eric Fru</creator><creator>Liu, Pan-Pan</creator><creator>Hozzein, Wael N</creator><creator>Zhu, Yong-Guan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3861-8482</orcidid></search><sort><creationdate>20181106</creationdate><title>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</title><author>Yuan, Hai-Yan ; Ding, Long-Jun ; Zama, Eric Fru ; Liu, Pan-Pan ; Hozzein, Wael N ; Zhu, Yong-Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anaerobic bacteria</topic><topic>Animal wastes</topic><topic>Bacteria</topic><topic>Carbon cycle</topic><topic>Charcoal</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Infrared spectroscopy</topic><topic>Methanogenesis</topic><topic>Methanogenic bacteria</topic><topic>Microorganisms</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polymerase chain reaction</topic><topic>Quinones</topic><topic>Raw materials</topic><topic>Rice fields</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Straw</topic><topic>Substrates</topic><topic>Wood</topic><topic>Wood chips</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Hai-Yan</creatorcontrib><creatorcontrib>Ding, Long-Jun</creatorcontrib><creatorcontrib>Zama, Eric Fru</creatorcontrib><creatorcontrib>Liu, Pan-Pan</creatorcontrib><creatorcontrib>Hozzein, Wael N</creatorcontrib><creatorcontrib>Zhu, Yong-Guan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Hai-Yan</au><au>Ding, Long-Jun</au><au>Zama, Eric Fru</au><au>Liu, Pan-Pan</au><au>Hozzein, Wael N</au><au>Zhu, Yong-Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>52</volume><issue>21</issue><spage>12198</spage><epage>12207</epage><pages>12198-12207</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biochar has the potential to influence methanogenesis which is a key component of global carbon cycling. However, the mechanisms governing biochar’s influence on methanogenesis is not well understood, especially its effects on interspecies relationships between methanogens and anaerobic bacteria (e.g., Geobacteraceae). To understand how different types of biochar influence methanogenesis, biochars derived from rice straw (RB), wood chips (WB), and manure (MB) were added to the methanogenic enrichment culture system of a paddy soil. Compared to the nonbiochar control, RB and MB additions accelerated methanogenesis remarkably, showing 10.7 and 12.3-folds higher methane production rate, respectively; while WB had little effect on methanogenesis. Using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical methods, RB and MB also had higher redox-active properties or charging and discharging capacities than WB, and the functional groups, mainly quinones, on the biochar surface played an important role in facilitating methanogenesis. Quantitative polymerase chain reaction results demonstrated that electronic syntrophy did exist between methanogens and Geobacteraceae. RB and MB stimulate methanogenesis by facilitating direct interspecies electron transfer between methanogens and Geobacteraceae. Our findings contribute to a better understanding of the effects of biochars from different feedstocks on methanogenesis and provide new evidence to the mechanisms of stimulating methanogenesis via biochar.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30338987</pmid><doi>10.1021/acs.est.8b04121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3861-8482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2018-11, Vol.52 (21), p.12198-12207 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2123714142 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anaerobic bacteria Animal wastes Bacteria Carbon cycle Charcoal Electrochemistry Electron transfer Ethanol Fourier transforms Functional groups Infrared spectroscopy Methanogenesis Methanogenic bacteria Microorganisms Photoelectron spectroscopy Photoelectrons Polymerase chain reaction Quinones Raw materials Rice fields Spectroscopy Spectrum analysis Straw Substrates Wood Wood chips X ray spectra |
title | Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar%20Modulates%20Methanogenesis%20through%20Electron%20Syntrophy%20of%20Microorganisms%20with%20Ethanol%20as%20a%20Substrate&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yuan,%20Hai-Yan&rft.date=2018-11-06&rft.volume=52&rft.issue=21&rft.spage=12198&rft.epage=12207&rft.pages=12198-12207&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b04121&rft_dat=%3Cproquest_cross%3E2123714142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-a3e1a1aa8d5fd58c98f29632b1d35a89254b8fa243463612d8fae1f1f2c5f26f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132689941&rft_id=info:pmid/30338987&rfr_iscdi=true |