Loading…
Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries
Sluggish vanadium reaction rates on the porous carbon electrodes typically used in redox flow batteries have prompted research into pretreatment strategies, most notably thermal oxidation, to improve performance. While effective, these approaches have nuanced and complex effects on electrode charact...
Saved in:
Published in: | ACS applied materials & interfaces 2018-12, Vol.10 (51), p.44430-44442 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sluggish vanadium reaction rates on the porous carbon electrodes typically used in redox flow batteries have prompted research into pretreatment strategies, most notably thermal oxidation, to improve performance. While effective, these approaches have nuanced and complex effects on electrode characteristics hampering the development of explicit structure–function relations that enable quantitative correlation between specific properties and overall electrochemical performance. Here, we seek to resolve these relationships through rigorous analysis of thermally pretreated SGL 29AA carbon paper electrodes using a suite of electrochemical, microscopic, and spectroscopic techniques and culminating in full cell testing. We systematically vary pretreatment temperature, from 400 to 500 °C, while holding pretreatment time constant at 30 h, and evaluate changes in the physical, chemical, and electrochemical properties of the electrodes. We find that several different parameters contribute to observed performance, including hydrophilicity, microstructure, electrochemical surface area, and surface chemistry, and it is important to note that not all of these properties improve with increasing pretreatment temperature. Consequently, while the best overall performance is achieved with a 475 °C pretreatment, this enhancement is achieved from a balance, rather than a maximization, of critical properties. A deeper understanding of the role each property plays in battery performance is the first step toward developing targeted pretreatment strategies that may enable transformative performance improvements. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b15793 |