Loading…
An estrogen antagonist, cyclofenil, has anti-dengue-virus activity
Dengue virus (DENV) infections are a major cause of morbidity and mortality in tropical and subtropical areas. Several compounds that act against DENV have been studied in clinical trials to date; however, there have been no compounds identified that are effective in reducing the severity of the cli...
Saved in:
Published in: | Archives of virology 2019-01, Vol.164 (1), p.225-234 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dengue virus (DENV) infections are a major cause of morbidity and mortality in tropical and subtropical areas. Several compounds that act against DENV have been studied in clinical trials to date; however, there have been no compounds identified that are effective in reducing the severity of the clinical manifestations. To explore anti-DENV drugs, we examined small molecules that interact with DENV NS1 and inhibit DENV replication. Cyclofenil, which is a selective estrogen receptor modulator (SERM) and has been used clinically as an ovulation-inducing drug, showed an inhibitory effect on DENV replication in mammalian cells but not in mosquito cells. Other SERMs also inhibited DENV replication in mammalian cells, but cyclofenil showed the weakest cytotoxicity among these SERMs. Cyclofenil also inhibited the replication of Zika virus. A time-of-addition assay suggested that cyclofenil may interfere with two stages of the DENV life cycle: the translation-RNA synthesis and assembly-maturation stages. However, the level of intracellular infectious particles decreased more drastically after treatment with cyclofenil than the viral RNA level did, indicating that the assembly-maturation stage might be the main target of cyclofenil. In electron microscopy analysis, many aggregated particles were detected in DENV-infected cells in the presence of cyclofenil, supporting the possibility that cyclofenil impedes the process of assembly and maturation of DENV. |
---|---|
ISSN: | 0304-8608 1432-8798 |
DOI: | 10.1007/s00705-018-4079-0 |