Loading…
Electrochemically prepared oxides for resistive switching memories
Redox-based resistive switching memories (ReRAMs) are the strongest candidates for next generation nonvolatile memories. These devices are commonly composed of metal/solid electrolyte/metal junctions, where the solid electrolyte is usually an oxide layer. A key aspect in the ReRAMs development is th...
Saved in:
Published in: | Faraday discussions 2019-02, Vol.213, p.165-181 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Redox-based resistive switching memories (ReRAMs) are the strongest candidates for next generation nonvolatile memories. These devices are commonly composed of metal/solid electrolyte/metal junctions, where the solid electrolyte is usually an oxide layer. A key aspect in the ReRAMs development is the solid electrolyte engineering, since it is crucial to tailor the material properties for obtaining excellent switching properties (
e.g.
retention, endurance,
etc.
). Here we present an anodizing process as a non vacuum and low temperature electrochemical technique for growing oxides with tailored structural and electronic properties. The effect of the anodizing conditions on the solid state properties of the anodic oxides is studied in relation to the final ReRAM device performances demonstrating the great potentiality of this technique to produce high quality oxide thin films for resistive switching memories.
Electrochemically grown anodic oxides of different compositions and properties were tested as solid electrolytes for resistive switching memories. |
---|---|
ISSN: | 1359-6640 1364-5498 |
DOI: | 10.1039/c8fd00112j |