Loading…

Structure and diversity of shallow soft-bottom benthic macrofauna in the Gulf of Lions (NW Mediterranean)

Samples of soft-sediment macrobenthos from 92 sites between 10 and 50 m depth were used to assess (1) the main soft-bottom macrofauna communities in the Gulf of Lions, (2) the different components of the diversity of benthic macrofauna in this area, and (3) the relevance of the use of major taxonomi...

Full description

Saved in:
Bibliographic Details
Published in:Helgoland marine research 2008-09, Vol.62 (3), p.201-214
Main Authors: Labrune, Céline, Grémare, Antoine, Amouroux, Jean-Michel, Sardá, Rafael, Gil, João, Taboada, Sergi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Samples of soft-sediment macrobenthos from 92 sites between 10 and 50 m depth were used to assess (1) the main soft-bottom macrofauna communities in the Gulf of Lions, (2) the different components of the diversity of benthic macrofauna in this area, and (3) the relevance of the use of major taxonomic groups as surrogates for the analysis of the structure and diversity of total macrofauna. Three main communities were identified by cluster analysis and associated procedures. These communities corresponded well to the assemblages recently identified on the basis of polychaete composition. The α-diversity indices were in accordance with those reported for similar communities in the Mediterranean. Conversely, the β-diversity value was higher than the few other data available in the literature for marine soft-bottom macrofauna. The total number of species in the studied area estimated by the “total species accumulation curve” (TS) method was 2,319, which was only 10% higher than the number obtained by extrapolation of the species–area curve. The similarity matrix based on polychaetes correlated best with the one based on total macrofauna. Polychaetes and crustaceans were also the best surrogates of total macrofauna when assessing α-diversity (except in the case of Δ*). Conversely, molluscs were the best surrogates of total macrofauna β-diversity. Our results show that the choice of an optimal surrogate for total benthic macrofauna depends on the characteristic of the benthic macrofauna to be studied. Moreover, this choice is also dependent on the environment to be studied.
ISSN:1438-387X
1438-3888
DOI:10.1007/s10152-008-0108-9