Loading…
Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation
[Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon cha...
Saved in:
Published in: | Bioresource technology 2019-01, Vol.272, p.300-307 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993 |
container_end_page | 307 |
container_issue | |
container_start_page | 300 |
container_title | Bioresource technology |
container_volume | 272 |
creator | Kumar, Manoj Sahoo, Prakash C. Srikanth, Sandipam Bagai, Reshmi Puri, S.K. Ramakumar, S.S.V. |
description | [Display omitted]
•Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length.
Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation. |
doi_str_mv | 10.1016/j.biortech.2018.10.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126906123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852418314548</els_id><sourcerecordid>2126906123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EglL4BZQlmxQ_GifZgRAvCQkWsMXyY6K6SmLwuAj4elxa2LIaaXTuHc0h5ITRGaNMni1nxoeYwC5mnLImL2dUsB0yYU0tSt7WcpdMaCtp2VR8fkAOEZeUZqTm--RAUCElb9oJeXlchBQQRvTJf-nkw1iEroAebIqh1Db5dygGb2MwgEUXYoGh17HQiB4TuMLqaHLI-fDhHRQp6hEzNvx0HZG9TvcIx9s5Jc_XV0-Xt-X9w83d5cV9aee0SqW00HCwXc2oMLwBK4Spu7o2lXNAnWGGacZYJeZadpRZAUI752zFbdV2bSum5HTT-xrD2wowqcGjhb7XI4QVKs64bKlkXGRUbtD8EmKETr1GP-j4qRhVa7dqqX7dqrXb9T6Ly8GT7Y2VGcD9xX5lZuB8A0D-9N1DVGg9jBacj1mncsH_d-MbpOiRKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126906123</pqid></control><display><type>article</type><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</creator><creatorcontrib>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</creatorcontrib><description>[Display omitted]
•Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length.
Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2018.10.031</identifier><identifier>PMID: 30366289</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acetic Acid - metabolism ; Acetobacterium - metabolism ; Artificial photosynthesis ; Bio-fuels ; Biocatalysis ; Cadmium Compounds - chemistry ; Cadmium sulfide ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Clostridium - metabolism ; Cysteine - metabolism ; Electrons ; Hydrogen Sulfide - metabolism ; Multi-carbon organics ; Myricaceae - metabolism ; Pseudomonas - metabolism ; Sulfides - chemistry ; Sunlight</subject><ispartof>Bioresource technology, 2019-01, Vol.272, p.300-307</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</citedby><cites>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30366289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Sahoo, Prakash C.</creatorcontrib><creatorcontrib>Srikanth, Sandipam</creatorcontrib><creatorcontrib>Bagai, Reshmi</creatorcontrib><creatorcontrib>Puri, S.K.</creatorcontrib><creatorcontrib>Ramakumar, S.S.V.</creatorcontrib><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length.
Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</description><subject>Acetic Acid - metabolism</subject><subject>Acetobacterium - metabolism</subject><subject>Artificial photosynthesis</subject><subject>Bio-fuels</subject><subject>Biocatalysis</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium sulfide</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Clostridium - metabolism</subject><subject>Cysteine - metabolism</subject><subject>Electrons</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Multi-carbon organics</subject><subject>Myricaceae - metabolism</subject><subject>Pseudomonas - metabolism</subject><subject>Sulfides - chemistry</subject><subject>Sunlight</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EglL4BZQlmxQ_GifZgRAvCQkWsMXyY6K6SmLwuAj4elxa2LIaaXTuHc0h5ITRGaNMni1nxoeYwC5mnLImL2dUsB0yYU0tSt7WcpdMaCtp2VR8fkAOEZeUZqTm--RAUCElb9oJeXlchBQQRvTJf-nkw1iEroAebIqh1Db5dygGb2MwgEUXYoGh17HQiB4TuMLqaHLI-fDhHRQp6hEzNvx0HZG9TvcIx9s5Jc_XV0-Xt-X9w83d5cV9aee0SqW00HCwXc2oMLwBK4Spu7o2lXNAnWGGacZYJeZadpRZAUI752zFbdV2bSum5HTT-xrD2wowqcGjhb7XI4QVKs64bKlkXGRUbtD8EmKETr1GP-j4qRhVa7dqqX7dqrXb9T6Ly8GT7Y2VGcD9xX5lZuB8A0D-9N1DVGg9jBacj1mncsH_d-MbpOiRKw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Kumar, Manoj</creator><creator>Sahoo, Prakash C.</creator><creator>Srikanth, Sandipam</creator><creator>Bagai, Reshmi</creator><creator>Puri, S.K.</creator><creator>Ramakumar, S.S.V.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><author>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic Acid - metabolism</topic><topic>Acetobacterium - metabolism</topic><topic>Artificial photosynthesis</topic><topic>Bio-fuels</topic><topic>Biocatalysis</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium sulfide</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Clostridium - metabolism</topic><topic>Cysteine - metabolism</topic><topic>Electrons</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Multi-carbon organics</topic><topic>Myricaceae - metabolism</topic><topic>Pseudomonas - metabolism</topic><topic>Sulfides - chemistry</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Sahoo, Prakash C.</creatorcontrib><creatorcontrib>Srikanth, Sandipam</creatorcontrib><creatorcontrib>Bagai, Reshmi</creatorcontrib><creatorcontrib>Puri, S.K.</creatorcontrib><creatorcontrib>Ramakumar, S.S.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Sahoo, Prakash C.</au><au>Srikanth, Sandipam</au><au>Bagai, Reshmi</au><au>Puri, S.K.</au><au>Ramakumar, S.S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>272</volume><spage>300</spage><epage>307</epage><pages>300-307</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length.
Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30366289</pmid><doi>10.1016/j.biortech.2018.10.031</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2019-01, Vol.272, p.300-307 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126906123 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Acetic Acid - metabolism Acetobacterium - metabolism Artificial photosynthesis Bio-fuels Biocatalysis Cadmium Compounds - chemistry Cadmium sulfide Carbon dioxide Carbon Dioxide - chemistry Carbon Dioxide - metabolism Clostridium - metabolism Cysteine - metabolism Electrons Hydrogen Sulfide - metabolism Multi-carbon organics Myricaceae - metabolism Pseudomonas - metabolism Sulfides - chemistry Sunlight |
title | Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosensitization%20of%20electro-active%20microbes%20for%20solar%20assisted%20carbon%20dioxide%20transformation&rft.jtitle=Bioresource%20technology&rft.au=Kumar,%20Manoj&rft.date=2019-01&rft.volume=272&rft.spage=300&rft.epage=307&rft.pages=300-307&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2018.10.031&rft_dat=%3Cproquest_cross%3E2126906123%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126906123&rft_id=info:pmid/30366289&rfr_iscdi=true |