Loading…

Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation

[Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon cha...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2019-01, Vol.272, p.300-307
Main Authors: Kumar, Manoj, Sahoo, Prakash C., Srikanth, Sandipam, Bagai, Reshmi, Puri, S.K., Ramakumar, S.S.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993
cites cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993
container_end_page 307
container_issue
container_start_page 300
container_title Bioresource technology
container_volume 272
creator Kumar, Manoj
Sahoo, Prakash C.
Srikanth, Sandipam
Bagai, Reshmi
Puri, S.K.
Ramakumar, S.S.V.
description [Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length. Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.
doi_str_mv 10.1016/j.biortech.2018.10.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126906123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852418314548</els_id><sourcerecordid>2126906123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EglL4BZQlmxQ_GifZgRAvCQkWsMXyY6K6SmLwuAj4elxa2LIaaXTuHc0h5ITRGaNMni1nxoeYwC5mnLImL2dUsB0yYU0tSt7WcpdMaCtp2VR8fkAOEZeUZqTm--RAUCElb9oJeXlchBQQRvTJf-nkw1iEroAebIqh1Db5dygGb2MwgEUXYoGh17HQiB4TuMLqaHLI-fDhHRQp6hEzNvx0HZG9TvcIx9s5Jc_XV0-Xt-X9w83d5cV9aee0SqW00HCwXc2oMLwBK4Spu7o2lXNAnWGGacZYJeZadpRZAUI752zFbdV2bSum5HTT-xrD2wowqcGjhb7XI4QVKs64bKlkXGRUbtD8EmKETr1GP-j4qRhVa7dqqX7dqrXb9T6Ly8GT7Y2VGcD9xX5lZuB8A0D-9N1DVGg9jBacj1mncsH_d-MbpOiRKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126906123</pqid></control><display><type>article</type><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</creator><creatorcontrib>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</creatorcontrib><description>[Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length. Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ &gt; 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2018.10.031</identifier><identifier>PMID: 30366289</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acetic Acid - metabolism ; Acetobacterium - metabolism ; Artificial photosynthesis ; Bio-fuels ; Biocatalysis ; Cadmium Compounds - chemistry ; Cadmium sulfide ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Clostridium - metabolism ; Cysteine - metabolism ; Electrons ; Hydrogen Sulfide - metabolism ; Multi-carbon organics ; Myricaceae - metabolism ; Pseudomonas - metabolism ; Sulfides - chemistry ; Sunlight</subject><ispartof>Bioresource technology, 2019-01, Vol.272, p.300-307</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</citedby><cites>FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30366289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Sahoo, Prakash C.</creatorcontrib><creatorcontrib>Srikanth, Sandipam</creatorcontrib><creatorcontrib>Bagai, Reshmi</creatorcontrib><creatorcontrib>Puri, S.K.</creatorcontrib><creatorcontrib>Ramakumar, S.S.V.</creatorcontrib><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length. Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ &gt; 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</description><subject>Acetic Acid - metabolism</subject><subject>Acetobacterium - metabolism</subject><subject>Artificial photosynthesis</subject><subject>Bio-fuels</subject><subject>Biocatalysis</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium sulfide</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Clostridium - metabolism</subject><subject>Cysteine - metabolism</subject><subject>Electrons</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Multi-carbon organics</subject><subject>Myricaceae - metabolism</subject><subject>Pseudomonas - metabolism</subject><subject>Sulfides - chemistry</subject><subject>Sunlight</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EglL4BZQlmxQ_GifZgRAvCQkWsMXyY6K6SmLwuAj4elxa2LIaaXTuHc0h5ITRGaNMni1nxoeYwC5mnLImL2dUsB0yYU0tSt7WcpdMaCtp2VR8fkAOEZeUZqTm--RAUCElb9oJeXlchBQQRvTJf-nkw1iEroAebIqh1Db5dygGb2MwgEUXYoGh17HQiB4TuMLqaHLI-fDhHRQp6hEzNvx0HZG9TvcIx9s5Jc_XV0-Xt-X9w83d5cV9aee0SqW00HCwXc2oMLwBK4Spu7o2lXNAnWGGacZYJeZadpRZAUI752zFbdV2bSum5HTT-xrD2wowqcGjhb7XI4QVKs64bKlkXGRUbtD8EmKETr1GP-j4qRhVa7dqqX7dqrXb9T6Ly8GT7Y2VGcD9xX5lZuB8A0D-9N1DVGg9jBacj1mncsH_d-MbpOiRKw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Kumar, Manoj</creator><creator>Sahoo, Prakash C.</creator><creator>Srikanth, Sandipam</creator><creator>Bagai, Reshmi</creator><creator>Puri, S.K.</creator><creator>Ramakumar, S.S.V.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</title><author>Kumar, Manoj ; Sahoo, Prakash C. ; Srikanth, Sandipam ; Bagai, Reshmi ; Puri, S.K. ; Ramakumar, S.S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic Acid - metabolism</topic><topic>Acetobacterium - metabolism</topic><topic>Artificial photosynthesis</topic><topic>Bio-fuels</topic><topic>Biocatalysis</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium sulfide</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Clostridium - metabolism</topic><topic>Cysteine - metabolism</topic><topic>Electrons</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Multi-carbon organics</topic><topic>Myricaceae - metabolism</topic><topic>Pseudomonas - metabolism</topic><topic>Sulfides - chemistry</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Sahoo, Prakash C.</creatorcontrib><creatorcontrib>Srikanth, Sandipam</creatorcontrib><creatorcontrib>Bagai, Reshmi</creatorcontrib><creatorcontrib>Puri, S.K.</creatorcontrib><creatorcontrib>Ramakumar, S.S.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Sahoo, Prakash C.</au><au>Srikanth, Sandipam</au><au>Bagai, Reshmi</au><au>Puri, S.K.</au><au>Ramakumar, S.S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>272</volume><spage>300</spage><epage>307</epage><pages>300-307</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Stand alone process with light energy as external energy source.•Photosynthesis mimicked in microbes via enabling light harvesting ability.•Nano inorganic hybrid on microbe surface facilitates electron transfer.•H2S as sulphur source resulted in the production of higher carbon chain length. Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ &gt; 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30366289</pmid><doi>10.1016/j.biortech.2018.10.031</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2019-01, Vol.272, p.300-307
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2126906123
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Acetic Acid - metabolism
Acetobacterium - metabolism
Artificial photosynthesis
Bio-fuels
Biocatalysis
Cadmium Compounds - chemistry
Cadmium sulfide
Carbon dioxide
Carbon Dioxide - chemistry
Carbon Dioxide - metabolism
Clostridium - metabolism
Cysteine - metabolism
Electrons
Hydrogen Sulfide - metabolism
Multi-carbon organics
Myricaceae - metabolism
Pseudomonas - metabolism
Sulfides - chemistry
Sunlight
title Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosensitization%20of%20electro-active%20microbes%20for%20solar%20assisted%20carbon%20dioxide%20transformation&rft.jtitle=Bioresource%20technology&rft.au=Kumar,%20Manoj&rft.date=2019-01&rft.volume=272&rft.spage=300&rft.epage=307&rft.pages=300-307&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2018.10.031&rft_dat=%3Cproquest_cross%3E2126906123%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-6ce82ecf7103b28ec33b7f77b5dde0db1b1a111534a6f01c3e3adddc52c59f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126906123&rft_id=info:pmid/30366289&rfr_iscdi=true